torch.nn.functional.poisson_nll_loss#
- torch.nn.functional.poisson_nll_loss(input, target, log_input=True, full=False, size_average=None, eps=1e-08, reduce=None, reduction='mean')[source]#
Compute the Poisson negative log likelihood loss.
See
PoissonNLLLossfor details.- Parameters
input (Tensor) – Expectation of underlying Poisson distribution.
target (Tensor) – Random sample .
log_input (bool) – If
Truethe loss is computed as , ifFalsethen loss is . Default:Truefull (bool) – Whether to compute full loss, i. e. to add the Stirling approximation term. Default:
False.size_average (bool, optional) – Deprecated (see
reduction).eps (float, optional) – Small value to avoid evaluation of when
log_input=False. Default: 1e-8reduce (bool, optional) – Deprecated (see
reduction).reduction (str, optional) – Specifies the reduction to apply to the output:
'none'|'mean'|'sum'.'none': no reduction will be applied,'mean': the sum of the output will be divided by the number of elements in the output,'sum': the output will be summed. Note:size_averageandreduceare in the process of being deprecated, and in the meantime, specifying either of those two args will overridereduction. Default:'mean'
- Return type