Rate this Page

AvgPool1d#

class torch.nn.AvgPool1d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True)[source]#

Applies a 1D average pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N,C,L)(N, C, L), output (N,C,Lout)(N, C, L_{out}) and kernel_size kk can be precisely described as:

out(Ni,Cj,l)=1km=0k1input(Ni,Cj,stride×l+m)\text{out}(N_i, C_j, l) = \frac{1}{k} \sum_{m=0}^{k-1} \text{input}(N_i, C_j, \text{stride} \times l + m)

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.

Note

When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored.

Note

pad should be at most half of effective kernel size.

The parameters kernel_size, stride, padding can each be an int or a one-element tuple.

Parameters
  • kernel_size (Union[int, tuple[int]]) – the size of the window

  • stride (Union[int, tuple[int]]) – the stride of the window. Default value is kernel_size

  • padding (Union[int, tuple[int]]) – implicit zero padding to be added on both sides

  • ceil_mode (bool) – when True, will use ceil instead of floor to compute the output shape

  • count_include_pad (bool) – when True, will include the zero-padding in the averaging calculation

Shape:
  • Input: (N,C,Lin)(N, C, L_{in}) or (C,Lin)(C, L_{in}).

  • Output: (N,C,Lout)(N, C, L_{out}) or (C,Lout)(C, L_{out}), where

    Lout=Lin+2×paddingkernel_sizestride+1L_{out} = \left\lfloor \frac{L_{in} + 2 \times \text{padding} - \text{kernel\_size}}{\text{stride}} + 1\right\rfloor

    Per the note above, if ceil_mode is True and (Lout1)×strideLin+padding(L_{out} - 1) \times \text{stride} \geq L_{in} + \text{padding}, we skip the last window as it would start in the right padded region, resulting in LoutL_{out} being reduced by one.

Examples:

>>> # pool with window of size=3, stride=2
>>> m = nn.AvgPool1d(3, stride=2)
>>> m(torch.tensor([[[1., 2, 3, 4, 5, 6, 7]]]))
tensor([[[2., 4., 6.]]])