MultiLabelMarginLoss#
- class torch.nn.MultiLabelMarginLoss(size_average=None, reduce=None, reduction='mean')[source]#
- Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input (a 2D mini-batch Tensor) and output (which is a 2D Tensor of target class indices). For each sample in the mini-batch: - where , , , and for all and . - and must have the same size. - The criterion only considers a contiguous block of non-negative targets that starts at the front. - This allows for different samples to have variable amounts of target classes. - Parameters
- size_average (bool, optional) – Deprecated (see - reduction). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field- size_averageis set to- False, the losses are instead summed for each minibatch. Ignored when- reduceis- False. Default:- True
- reduce (bool, optional) – Deprecated (see - reduction). By default, the losses are averaged or summed over observations for each minibatch depending on- size_average. When- reduceis- False, returns a loss per batch element instead and ignores- size_average. Default:- True
- reduction (str, optional) – Specifies the reduction to apply to the output: - 'none'|- 'mean'|- 'sum'.- 'none': no reduction will be applied,- 'mean': the sum of the output will be divided by the number of elements in the output,- 'sum': the output will be summed. Note:- size_averageand- reduceare in the process of being deprecated, and in the meantime, specifying either of those two args will override- reduction. Default:- 'mean'
 
 - Shape:
- Input: or where N is the batch size and C is the number of classes. 
- Target: or , label targets padded by -1 ensuring same shape as the input. 
- Output: scalar. If - reductionis- 'none', then .
 
 - Examples - >>> loss = nn.MultiLabelMarginLoss() >>> x = torch.FloatTensor([[0.1, 0.2, 0.4, 0.8]]) >>> # for target y, only consider labels 3 and 0, not after label -1 >>> y = torch.LongTensor([[3, 0, -1, 1]]) >>> # 0.25 * ((1-(0.1-0.2)) + (1-(0.1-0.4)) + (1-(0.8-0.2)) + (1-(0.8-0.4))) >>> loss(x, y) tensor(0.85...)