torch.hash_tensor#
- torch.hash_tensor(input, *, mode=0) Tensor #
Returns a hash of all elements in the
input
tensor.Currently only mode=0 (reduction via xor) is supported. The output will always be of type
torch.uint64
. The elements ofinput
are upcasted to their 64 bit float / integer equivalent and bitcasted totorch.uint64
before reduction via xor.- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
mode (int) – The hash to use. Default: 0 (xor_reduction)
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 1.1918, -1.1813, 0.3373]]) >>> torch.hash_tensor(a) tensor(13822780554648485888, dtype=torch.uint64)
- torch.hash_tensor(input, dim, *, keepdim=False, mode=0) Tensor
Returns the hash of each row of the
input
tensor in the given dimensiondim
given by mode. Ifdim
is a list of dimensions, reduce over all of them.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimension(s)dim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 (orlen(dim)
) fewer dimension(s).- Parameters
- Keyword Arguments
mode (int) – The hash to use. Default: 0 (xor_reduction)
Example:
>>> a = torch.randn(2, 4) >>> a tensor([[ 0.1317, -0.5554, -1.4724, -1.1391], [ 0.0778, -0.6070, 0.6375, 0.1798]]) >>> torch.hash_tensor(a, 1) tensor([9233691267014066176, 9255993250844508160], dtype=torch.uint64)