torch.linspace#
- torch.linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) Tensor#
- Creates a one-dimensional tensor of size - stepswhose values are evenly spaced from- startto- end, inclusive. That is, the value are:- From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. - Parameters
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
- dtype (torch.dtype, optional) – the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both - startand- endare real, and corresponding complex dtype when either is complex.
- layout ( - torch.layout, optional) – the desired layout of returned Tensor. Default:- torch.strided.
- device ( - torch.device, optional) – the desired device of returned tensor. Default: if- None, uses the current device for the default tensor type (see- torch.set_default_device()).- devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: - False.
 
 - Example: - >>> torch.linspace(3, 10, steps=5) tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) >>> torch.linspace(-10, 10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=1) tensor([-10.])