torch.sparse.sum#
- torch.sparse.sum(input, dim=None, dtype=None)[source]#
Return the sum of each row of the given sparse tensor.
Returns the sum of each row of the sparse tensor
inputin the given dimensionsdim. Ifdimis a list of dimensions, reduce over all of them. When sum over allsparse_dim, this method returns a dense tensor instead of a sparse tensor.All summed
dimare squeezed (seetorch.squeeze()), resulting an output tensor havingdimfewer dimensions thaninput.During backward, only gradients at
nnzlocations ofinputwill propagate back. Note that the gradients ofinputis coalesced.- Parameters
input (Tensor) – the input sparse tensor
dim (int or tuple of ints) – a dimension or a list of dimensions to reduce. Default: reduce over all dims.
dtype (
torch.dtype, optional) – the desired data type of returned Tensor. Default: dtype ofinput.
- Return type
Example:
>>> nnz = 3 >>> dims = [5, 5, 2, 3] >>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)), torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz) >>> V = torch.randn(nnz, dims[2], dims[3]) >>> size = torch.Size(dims) >>> S = torch.sparse_coo_tensor(I, V, size) >>> S tensor(indices=tensor([[2, 0, 3], [2, 4, 1]]), values=tensor([[[-0.6438, -1.6467, 1.4004], [ 0.3411, 0.0918, -0.2312]], [[ 0.5348, 0.0634, -2.0494], [-0.7125, -1.0646, 2.1844]], [[ 0.1276, 0.1874, -0.6334], [-1.9682, -0.5340, 0.7483]]]), size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo) # when sum over only part of sparse_dims, return a sparse tensor >>> torch.sparse.sum(S, [1, 3]) tensor(indices=tensor([[0, 2, 3]]), values=tensor([[-1.4512, 0.4073], [-0.8901, 0.2017], [-0.3183, -1.7539]]), size=(5, 2), nnz=3, layout=torch.sparse_coo) # when sum over all sparse dim, return a dense tensor # with summed dims squeezed >>> torch.sparse.sum(S, [0, 1, 3]) tensor([-2.6596, -1.1450])