Rate this Page

LazyConvTranspose3d#

class torch.nn.LazyConvTranspose3d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)[source]#

A torch.nn.ConvTranspose3d module with lazy initialization of the in_channels argument.

The in_channels argument of the ConvTranspose3d is inferred from the input.size(1). The attributes that will be lazily initialized are weight and bias.

Check the torch.nn.modules.lazy.LazyModuleMixin for further documentation on lazy modules and their limitations.

Parameters
  • out_channels (int) – Number of channels produced by the convolution

  • kernel_size (int or tuple) – Size of the convolving kernel

  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int or tuple, optional) – dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Default: 0

  • output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

cls_to_become[source]#

alias of ConvTranspose3d