torch.nanmean#
- torch.nanmean(input, dim=None, keepdim=False, *, dtype=None, out=None) Tensor#
- Computes the mean of all non-NaN elements along the specified dimensions. Input must be floating point or complex. - This function is identical to - torch.mean()when there are no NaN values in the- inputtensor. In the presence of NaN,- torch.mean()will propagate the NaN to the output whereas- torch.nanmean()will ignore the NaN values (torch.nanmean(a) is equivalent to torch.mean(a[~a.isnan()])).- If - keepdimis- True, the output tensor is of the same size as- inputexcept in the dimension(s)- dimwhere it is of size 1. Otherwise,- dimis squeezed (see- torch.squeeze()), resulting in the output tensor having 1 (or- len(dim)) fewer dimension(s).- Parameters
- Keyword Arguments
- dtype ( - torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is casted to- dtypebefore the operation is performed. This is useful for preventing data type overflows. Default: None.
- out (Tensor, optional) – the output tensor. 
 
 - See also - torch.mean()computes the mean value, propagating NaN.- Example: - >>> x = torch.tensor([[torch.nan, 1, 2], [1, 2, 3]]) >>> x.mean() tensor(nan) >>> x.nanmean() tensor(1.8000) >>> x.mean(dim=0) tensor([ nan, 1.5000, 2.5000]) >>> x.nanmean(dim=0) tensor([1.0000, 1.5000, 2.5000]) # If all elements in the reduced dimensions are NaN then the result is NaN >>> torch.tensor([torch.nan]).nanmean() tensor(nan)