Rate this Page

Conv1d#

class torch.ao.nn.quantized.dynamic.modules.conv.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None, reduce_range=True)[source]#

A dynamically quantized conv module with floating point tensors as inputs and outputs.

For details on input arguments, parameters, and implementation see Conv1d and Conv1d and

Variables:
  • weight (Tensor) – packed tensor derived from the learnable weight parameter.

  • scale (Tensor) – scalar for the output scale

  • zero_point (Tensor) – scalar for the output zero point

See Conv1d for other attributes.

Examples:

>>> m = nn.quantized.dynamic.Conv1d(16, 33, 3, stride=2)
>>> input = torch.randn(20, 16, 100)
>>> output = m(input)