torch.full_like#
- torch.full_like(input, fill_value, \*, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) Tensor #
Returns a tensor with the same size as
input
filled withfill_value
.torch.full_like(input, fill_value)
is equivalent totorch.full(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device)
.- Parameters
input (Tensor) – the size of
input
will determine size of the output tensor.fill_value – the number to fill the output tensor with.
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
.layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.memory_format (
torch.memory_format
, optional) – the desired memory format of returned Tensor. Default:torch.preserve_format
.
Example:
>>> x = torch.ones(2, 3) >>> torch.full_like(x, 3.141592) tensor([[ 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416]]) >>> torch.full_like(x, 7) tensor([[7., 7., 7.], [7., 7., 7.]]) >>> torch.full_like(x, 0.5, dtype=torch.int32) tensor([[0, 0, 0], [0, 0, 0]], dtype=torch.int32) >>> y = torch.randn(3, 4, dtype=torch.float64) >>> torch.full_like(y, -1.0) tensor([[-1., -1., -1., -1.], [-1., -1., -1., -1.], [-1., -1., -1., -1.]], dtype=torch.float64)