LazyConvTranspose2d#
- class torch.nn.LazyConvTranspose2d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)[source]#
- A - torch.nn.ConvTranspose2dmodule with lazy initialization of the- in_channelsargument.- The - in_channelsargument of the- ConvTranspose2dis inferred from the- input.size(1). The attributes that will be lazily initialized are weight and bias.- Check the - torch.nn.modules.lazy.LazyModuleMixinfor further documentation on lazy modules and their limitations.- Parameters
- out_channels (int) – Number of channels produced by the convolution 
- stride (int or tuple, optional) – Stride of the convolution. Default: 1 
- padding (int or tuple, optional) – - dilation * (kernel_size - 1) - paddingzero-padding will be added to both sides of each dimension in the input. Default: 0
- output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0 
- groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1 
- bias (bool, optional) – If - True, adds a learnable bias to the output. Default:- True
- dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1 
 
 - cls_to_become[source]#
- alias of - ConvTranspose2d