torch.Tensor.scatter_#
- Tensor.scatter_(dim, index, src, *, reduce=None) Tensor#
Writes all values from the tensor
srcintoselfat the indices specified in theindextensor. For each value insrc, its output index is specified by its index insrcfordimension != dimand by the corresponding value inindexfordimension = dim.For a 3-D tensor,
selfis updated as:self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2
This is the reverse operation of the manner described in
gather().It is also required that
index.size(d) <= src.size(d)for all dimensionsd, and thatindex.size(d) <= self.size(d)for all dimensionsd != dim. Note thatinputandindexdo not broadcast against each other for NPUs, so when running on NPUs,inputandindexmust have the same number of dimensions. Standard broadcasting occurs in all other cases.Moreover, as for
gather(), the values ofindexmust be between0andself.size(dim) - 1inclusive.Warning
When indices are not unique, the behavior is non-deterministic (one of the values from
srcwill be picked arbitrarily) and the gradient will be incorrect (it will be propagated to all locations in the source that correspond to the same index)!Note
The backward pass is implemented only for
src.shape == index.shape.Additionally accepts an optional
reduceargument that allows specification of an optional reduction operation, which is applied to all values in the tensorsrcintoselfat the indices specified in theindex. For each value insrc, the reduction operation is applied to an index inselfwhich is specified by its index insrcfordimension != dimand by the corresponding value inindexfordimension = dim.Given a 3-D tensor and reduction using the multiplication operation,
selfis updated as:self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2
Reducing with the addition operation is the same as using
scatter_add_().Warning
The reduce argument with Tensor
srcis deprecated and will be removed in a future PyTorch release. Please usescatter_reduce_()instead for more reduction options.- Parameters
- Keyword Arguments
reduce (str, optional) – reduction operation to apply, can be either
'add'or'multiply'.
Example:
>>> src = torch.arange(1, 11).reshape((2, 5)) >>> src tensor([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10]]) >>> index = torch.tensor([[0, 1, 2, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) tensor([[1, 0, 0, 4, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]]) >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) tensor([[1, 2, 3, 0, 0], [6, 7, 0, 0, 8], [0, 0, 0, 0, 0]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='multiply') tensor([[2.0000, 2.0000, 2.4600, 2.0000], [2.0000, 2.0000, 2.0000, 2.4600]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='add') tensor([[2.0000, 2.0000, 3.2300, 2.0000], [2.0000, 2.0000, 2.0000, 3.2300]])
- scatter_(dim, index, value, *, reduce=None) Tensor:
Writes the value from
valueintoselfat the indices specified in theindextensor. This operation is equivalent to the previous version, with thesrctensor filled entirely withvalue.- Parameters
dim (int) – the axis along which to index
index (LongTensor) – the indices of elements to scatter, can be either empty or of the same dimensionality as
src. When empty, the operation returnsselfunchanged.value (Scalar) – the value to scatter.
- Keyword Arguments
reduce (str, optional) – reduction operation to apply, can be either
'add'or'multiply'.
Example:
>>> index = torch.tensor([[0, 1]]) >>> value = 2 >>> torch.zeros(3, 5).scatter_(0, index, value) tensor([[2., 0., 0., 0., 0.], [0., 2., 0., 0., 0.], [0., 0., 0., 0., 0.]])