Softplus#
- class torch.nn.Softplus(beta=1.0, threshold=20.0)[source]#
- Applies the Softplus function element-wise. - SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive. - For numerical stability the implementation reverts to the linear function when . - Parameters
 - Shape:
- Input: , where means any number of dimensions. 
- Output: , same shape as the input. 
 
   - Examples: - >>> m = nn.Softplus() >>> input = torch.randn(2) >>> output = m(input)