torch.normal#
- torch.normal(mean, std, *, generator=None, out=None) Tensor#
- Returns a tensor of random numbers drawn from separate normal distributions whose mean and standard deviation are given. - The - meanis a tensor with the mean of each output element’s normal distribution- The - stdis a tensor with the standard deviation of each output element’s normal distribution- The shapes of - meanand- stddon’t need to match, but the total number of elements in each tensor need to be the same.- Note - When the shapes do not match, the shape of - meanis used as the shape for the returned output tensor- Note - When - stdis a CUDA tensor, this function synchronizes its device with the CPU.- Parameters
- Keyword Arguments
- generator ( - torch.Generator, optional) – a pseudorandom number generator for sampling
- out (Tensor, optional) – the output tensor. 
 
 - Example: - >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, 8.0505, 8.1408, 9.0563, 10.0566]) - torch.normal(mean=0.0, std, *, out=None) Tensor
 - Similar to the function above, but the means are shared among all drawn elements. - Parameters
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) - torch.normal(mean, std=1.0, *, out=None) Tensor
 - Similar to the function above, but the standard deviations are shared among all drawn elements. - Parameters
- Keyword Arguments
- out (Tensor, optional) – the output tensor 
 - Example: - >>> torch.normal(mean=torch.arange(1., 6.)) tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) - torch.normal(mean, std, size, *, out=None) Tensor
 - Similar to the function above, but the means and standard deviations are shared among all drawn elements. The resulting tensor has size given by - size.- Parameters
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
 - Example: - >>> torch.normal(2, 3, size=(1, 4)) tensor([[-1.3987, -1.9544, 3.6048, 0.7909]])