torch.sparse.spdiags#
- torch.sparse.spdiags(diagonals, offsets, shape, layout=None) Tensor#
Creates a sparse 2D tensor by placing the values from rows of
diagonalsalong specified diagonals of the outputThe
offsetstensor controls which diagonals are set.If
offsets[i]= 0, it is the main diagonalIf
offsets[i]< 0, it is below the main diagonalIf
offsets[i]> 0, it is above the main diagonal
The number of rows in
diagonalsmust match the length ofoffsets, and an offset may not be repeated.- Parameters
- Keyword Arguments
layout (
torch.layout, optional) – The desired layout of the returned tensor.torch.sparse_coo,torch.sparse_cscandtorch.sparse_csrare supported. Default:torch.sparse_coo
Examples:
Set the main and first two lower diagonals of a matrix:
>>> diags = torch.arange(9).reshape(3, 3) >>> diags tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3)) >>> s tensor(indices=tensor([[0, 1, 2, 1, 2, 2], [0, 1, 2, 0, 1, 0]]), values=tensor([0, 1, 2, 3, 4, 6]), size=(3, 3), nnz=6, layout=torch.sparse_coo) >>> s.to_dense() tensor([[0, 0, 0], [3, 1, 0], [6, 4, 2]])
Change the output layout:
>>> diags = torch.arange(9).reshape(3, 3) >>> diags tensor([[0, 1, 2],[3, 4, 5], [6, 7, 8]) >>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3), layout=torch.sparse_csr) >>> s tensor(crow_indices=tensor([0, 1, 3, 6]), col_indices=tensor([0, 0, 1, 0, 1, 2]), values=tensor([0, 3, 1, 6, 4, 2]), size=(3, 3), nnz=6, layout=torch.sparse_csr) >>> s.to_dense() tensor([[0, 0, 0], [3, 1, 0], [6, 4, 2]])
Set partial diagonals of a large output:
>>> diags = torch.tensor([[1, 2], [3, 4]]) >>> offsets = torch.tensor([0, -1]) >>> torch.sparse.spdiags(diags, offsets, (5, 5)).to_dense() tensor([[1, 0, 0, 0, 0], [3, 2, 0, 0, 0], [0, 4, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])
Note
When setting the values along a given diagonal the index into the diagonal and the index into the row of
diagonalsis taken as the column index in the output. This has the effect that when setting a diagonal with a positive offset k the first value along that diagonal will be the value in position k of the row ofdiagonalsSpecifying a positive offset:
>>> diags = torch.tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) >>> torch.sparse.spdiags(diags, torch.tensor([0, 1, 2]), (5, 5)).to_dense() tensor([[1, 2, 3, 0, 0], [0, 2, 3, 0, 0], [0, 0, 3, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])