Float8WeightOnlyConfig#
- class torchao.quantization.Float8WeightOnlyConfig(weight_dtype: dtype = torch.float8_e4m3fn, set_inductor_config: bool = True, version: int = 2)[source][source]#
Configuration for applying float8 weight-only symmetric per-channel quantization to linear layers.
- Parameters
weight_dtype (torch.dtype) – The target data type for weight quantization. Default is torch.float8_e4m3fn.
set_inductor_config (bool) – if True, adjusts torchinductor settings to recommended values.
version (int) – the version of the config, version 1 is deprecated, version 2 is using Float8Tensor (default)
Note
The actual matmul will be computed in original precision of the weight tensor.
Example:
import torch.nn as nn from torchao.quantization import Float8WeightOnlyConfig, quantize_ model = nn.Sequential(nn.Linear(2048, 2048, device="cuda")) quantize_(model, Float8WeightOnlyConfig())