Rate this Page

Spatial Transformer Networks Tutorial#

Created On: Nov 08, 2017 | Last Updated: Jan 19, 2024 | Last Verified: Nov 05, 2024

Author: Ghassen HAMROUNI

../_images/FSeq.png

In this tutorial, you will learn how to augment your network using a visual attention mechanism called spatial transformer networks. You can read more about the spatial transformer networks in the DeepMind paper

Spatial transformer networks are a generalization of differentiable attention to any spatial transformation. Spatial transformer networks (STN for short) allow a neural network to learn how to perform spatial transformations on the input image in order to enhance the geometric invariance of the model. For example, it can crop a region of interest, scale and correct the orientation of an image. It can be a useful mechanism because CNNs are not invariant to rotation and scale and more general affine transformations.

One of the best things about STN is the ability to simply plug it into any existing CNN with very little modification.

# License: BSD
# Author: Ghassen Hamrouni

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np

plt.ion()   # interactive mode
<contextlib.ExitStack object at 0x7fc2e7de7580>

Loading the data#

In this post we experiment with the classic MNIST dataset. Using a standard convolutional network augmented with a spatial transformer network.

from six.moves import urllib
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Training dataset
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='.', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])), batch_size=64, shuffle=True, num_workers=4)
# Test dataset
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='.', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])), batch_size=64, shuffle=True, num_workers=4)
  0%|          | 0.00/9.91M [00:00<?, ?B/s]
100%|██████████| 9.91M/9.91M [00:00<00:00, 131MB/s]

  0%|          | 0.00/28.9k [00:00<?, ?B/s]
100%|██████████| 28.9k/28.9k [00:00<00:00, 29.0MB/s]

  0%|          | 0.00/1.65M [00:00<?, ?B/s]
100%|██████████| 1.65M/1.65M [00:00<00:00, 59.1MB/s]

  0%|          | 0.00/4.54k [00:00<?, ?B/s]
100%|██████████| 4.54k/4.54k [00:00<00:00, 27.1MB/s]

Depicting spatial transformer networks#

Spatial transformer networks boils down to three main components :

  • The localization network is a regular CNN which regresses the transformation parameters. The transformation is never learned explicitly from this dataset, instead the network learns automatically the spatial transformations that enhances the global accuracy.

  • The grid generator generates a grid of coordinates in the input image corresponding to each pixel from the output image.

  • The sampler uses the parameters of the transformation and applies it to the input image.

../_images/stn-arch.png

Note

We need the latest version of PyTorch that contains affine_grid and grid_sample modules.

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

        # Spatial transformer localization-network
        self.localization = nn.Sequential(
            nn.Conv2d(1, 8, kernel_size=7),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True),
            nn.Conv2d(8, 10, kernel_size=5),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True)
        )

        # Regressor for the 3 * 2 affine matrix
        self.fc_loc = nn.Sequential(
            nn.Linear(10 * 3 * 3, 32),
            nn.ReLU(True),
            nn.Linear(32, 3 * 2)
        )

        # Initialize the weights/bias with identity transformation
        self.fc_loc[2].weight.data.zero_()
        self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))

    # Spatial transformer network forward function
    def stn(self, x):
        xs = self.localization(x)
        xs = xs.view(-1, 10 * 3 * 3)
        theta = self.fc_loc(xs)
        theta = theta.view(-1, 2, 3)

        grid = F.affine_grid(theta, x.size())
        x = F.grid_sample(x, grid)

        return x

    def forward(self, x):
        # transform the input
        x = self.stn(x)

        # Perform the usual forward pass
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


model = Net().to(device)

Training the model#

Now, let’s use the SGD algorithm to train the model. The network is learning the classification task in a supervised way. In the same time the model is learning STN automatically in an end-to-end fashion.

optimizer = optim.SGD(model.parameters(), lr=0.01)


def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 500 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
#
# A simple test procedure to measure the STN performances on MNIST.
#


def test():
    with torch.no_grad():
        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)

            # sum up batch loss
            test_loss += F.nll_loss(output, target, size_average=False).item()
            # get the index of the max log-probability
            pred = output.max(1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()

        test_loss /= len(test_loader.dataset)
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
              .format(test_loss, correct, len(test_loader.dataset),
                      100. * correct / len(test_loader.dataset)))

Visualizing the STN results#

Now, we will inspect the results of our learned visual attention mechanism.

We define a small helper function in order to visualize the transformations while training.

def convert_image_np(inp):
    """Convert a Tensor to numpy image."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    return inp

# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.


def visualize_stn():
    with torch.no_grad():
        # Get a batch of training data
        data = next(iter(test_loader))[0].to(device)

        input_tensor = data.cpu()
        transformed_input_tensor = model.stn(data).cpu()

        in_grid = convert_image_np(
            torchvision.utils.make_grid(input_tensor))

        out_grid = convert_image_np(
            torchvision.utils.make_grid(transformed_input_tensor))

        # Plot the results side-by-side
        f, axarr = plt.subplots(1, 2)
        axarr[0].imshow(in_grid)
        axarr[0].set_title('Dataset Images')

        axarr[1].imshow(out_grid)
        axarr[1].set_title('Transformed Images')

for epoch in range(1, 20 + 1):
    train(epoch)
    test()

# Visualize the STN transformation on some input batch
visualize_stn()

plt.ioff()
plt.show()
Dataset Images, Transformed Images
/usr/local/lib/python3.10/dist-packages/torch/nn/functional.py:5167: UserWarning:

Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details.

/usr/local/lib/python3.10/dist-packages/torch/nn/functional.py:5100: UserWarning:

Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details.

Train Epoch: 1 [0/60000 (0%)]   Loss: 2.295841
Train Epoch: 1 [32000/60000 (53%)]      Loss: 0.708199
/usr/local/lib/python3.10/dist-packages/torch/nn/_reduction.py:51: UserWarning:

size_average and reduce args will be deprecated, please use reduction='sum' instead.


Test set: Average loss: 0.2223, Accuracy: 9359/10000 (94%)

Train Epoch: 2 [0/60000 (0%)]   Loss: 0.236005
Train Epoch: 2 [32000/60000 (53%)]      Loss: 0.303996

Test set: Average loss: 0.1478, Accuracy: 9560/10000 (96%)

Train Epoch: 3 [0/60000 (0%)]   Loss: 0.371306
Train Epoch: 3 [32000/60000 (53%)]      Loss: 0.339600

Test set: Average loss: 0.1032, Accuracy: 9687/10000 (97%)

Train Epoch: 4 [0/60000 (0%)]   Loss: 0.199315
Train Epoch: 4 [32000/60000 (53%)]      Loss: 0.213886

Test set: Average loss: 0.0804, Accuracy: 9756/10000 (98%)

Train Epoch: 5 [0/60000 (0%)]   Loss: 0.111876
Train Epoch: 5 [32000/60000 (53%)]      Loss: 0.109472

Test set: Average loss: 0.0752, Accuracy: 9760/10000 (98%)

Train Epoch: 6 [0/60000 (0%)]   Loss: 0.102453
Train Epoch: 6 [32000/60000 (53%)]      Loss: 0.194421

Test set: Average loss: 0.0769, Accuracy: 9762/10000 (98%)

Train Epoch: 7 [0/60000 (0%)]   Loss: 0.148590
Train Epoch: 7 [32000/60000 (53%)]      Loss: 0.194734

Test set: Average loss: 0.0709, Accuracy: 9779/10000 (98%)

Train Epoch: 8 [0/60000 (0%)]   Loss: 0.159417
Train Epoch: 8 [32000/60000 (53%)]      Loss: 0.087848

Test set: Average loss: 0.0649, Accuracy: 9804/10000 (98%)

Train Epoch: 9 [0/60000 (0%)]   Loss: 0.173132
Train Epoch: 9 [32000/60000 (53%)]      Loss: 0.181670

Test set: Average loss: 0.0622, Accuracy: 9825/10000 (98%)

Train Epoch: 10 [0/60000 (0%)]  Loss: 0.072754
Train Epoch: 10 [32000/60000 (53%)]     Loss: 0.128459

Test set: Average loss: 0.0535, Accuracy: 9843/10000 (98%)

Train Epoch: 11 [0/60000 (0%)]  Loss: 0.159666
Train Epoch: 11 [32000/60000 (53%)]     Loss: 0.058873

Test set: Average loss: 0.0501, Accuracy: 9847/10000 (98%)

Train Epoch: 12 [0/60000 (0%)]  Loss: 0.041762
Train Epoch: 12 [32000/60000 (53%)]     Loss: 0.059210

Test set: Average loss: 0.0476, Accuracy: 9829/10000 (98%)

Train Epoch: 13 [0/60000 (0%)]  Loss: 0.086724
Train Epoch: 13 [32000/60000 (53%)]     Loss: 0.051743

Test set: Average loss: 0.0563, Accuracy: 9829/10000 (98%)

Train Epoch: 14 [0/60000 (0%)]  Loss: 0.133765
Train Epoch: 14 [32000/60000 (53%)]     Loss: 0.047636

Test set: Average loss: 0.0637, Accuracy: 9807/10000 (98%)

Train Epoch: 15 [0/60000 (0%)]  Loss: 0.089106
Train Epoch: 15 [32000/60000 (53%)]     Loss: 0.058198

Test set: Average loss: 0.0448, Accuracy: 9849/10000 (98%)

Train Epoch: 16 [0/60000 (0%)]  Loss: 0.090358
Train Epoch: 16 [32000/60000 (53%)]     Loss: 0.111591

Test set: Average loss: 0.0434, Accuracy: 9861/10000 (99%)

Train Epoch: 17 [0/60000 (0%)]  Loss: 0.101163
Train Epoch: 17 [32000/60000 (53%)]     Loss: 0.134474

Test set: Average loss: 0.0441, Accuracy: 9863/10000 (99%)

Train Epoch: 18 [0/60000 (0%)]  Loss: 0.039897
Train Epoch: 18 [32000/60000 (53%)]     Loss: 0.021770

Test set: Average loss: 0.0577, Accuracy: 9823/10000 (98%)

Train Epoch: 19 [0/60000 (0%)]  Loss: 0.047990
Train Epoch: 19 [32000/60000 (53%)]     Loss: 0.043824

Test set: Average loss: 0.0428, Accuracy: 9876/10000 (99%)

Train Epoch: 20 [0/60000 (0%)]  Loss: 0.017888
Train Epoch: 20 [32000/60000 (53%)]     Loss: 0.064772

Test set: Average loss: 0.0460, Accuracy: 9870/10000 (99%)

Total running time of the script: (1 minutes 36.471 seconds)