Source code for ignite.metrics.regression.spearman_correlation
from typing import Any, Callable, Tuple, Union
import torch
from torch import Tensor
from ignite.exceptions import NotComputableError
from ignite.metrics.epoch_metric import EpochMetric
from ignite.metrics.regression._base import _check_output_shapes, _check_output_types
def _spearman_r(predictions: Tensor, targets: Tensor) -> float:
from scipy.stats import spearmanr
np_preds = predictions.flatten().cpu().numpy()
np_targets = targets.flatten().cpu().numpy()
r = spearmanr(np_preds, np_targets).statistic
return r
[docs]class SpearmanRankCorrelation(EpochMetric):
r"""Calculates the
`Spearman's rank correlation coefficient
<https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient>`_.
.. math::
r_\text{s} = \text{Corr}[R[P], R[A]] = \frac{\text{Cov}[R[P], R[A]]}{\sigma_{R[P]} \sigma_{R[A]}}
where :math:`A` and :math:`P` are the ground truth and predicted value,
and :math:`R[X]` is the ranking value of :math:`X`.
The computation of this metric is implemented with
`scipy.stats.spearmanr <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html>`_.
- ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
- `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`.
Parameters are inherited from ``Metric.__init__``.
Args:
output_transform: a callable that is used to transform the
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
form expected by the metric. This can be useful if, for example, you have a multi-output model and
you want to compute the metric with respect to one of the outputs.
By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
check_compute_fn: if True, ``compute_fn`` is run on the first batch of data to ensure there are no
issues. If issues exist, user is warned that there might be an issue with the ``compute_fn``.
Default, True.
device: specifies which device updates are accumulated on. Setting the
metric's device to be the same as your ``update`` arguments ensures the ``update`` method is
non-blocking. By default, CPU.
skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be
true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)``
Alternatively, ``output_transform`` can be used to handle this.
Examples:
To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine.
The output of the engine's ``process_function`` needs to be in format of
``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``.
.. include:: defaults.rst
:start-after: :orphan:
.. testcode::
metric = SpearmanRankCorrelation()
metric.attach(default_evaluator, 'spearman_corr')
y_true = torch.tensor([0., 1., 2., 3., 4., 5.])
y_pred = torch.tensor([0.5, 2.8, 1.9, 1.3, 6.0, 4.1])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics['spearman_corr'])
.. testoutput::
0.7142857142857143
.. versionadded:: 0.5.2
"""
def __init__(
self,
output_transform: Callable[..., Any] = lambda x: x,
check_compute_fn: bool = True,
device: Union[str, torch.device] = torch.device("cpu"),
skip_unrolling: bool = False,
) -> None:
try:
from scipy.stats import spearmanr # noqa: F401
except ImportError:
raise ModuleNotFoundError("This module requires scipy to be installed.")
super().__init__(_spearman_r, output_transform, check_compute_fn, device, skip_unrolling)
[docs] def update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None:
y_pred, y = output[0].detach(), output[1].detach()
if y_pred.ndim == 1:
y_pred = y_pred.unsqueeze(1)
if y.ndim == 1:
y = y.unsqueeze(1)
_check_output_shapes(output)
_check_output_types(output)
super().update(output)
[docs] def compute(self) -> float:
if len(self._predictions) < 1 or len(self._targets) < 1:
raise NotComputableError(
"SpearmanRankCorrelation must have at least one example before it can be computed."
)
return super().compute()