clearml_logger#
ClearML logger and its helper handlers.
Classes
| ClearML handler to log metrics, text, model/optimizer parameters, plots during training and validation. | |
| Handler that saves input checkpoint as ClearML artifacts | |
| Helper handler to log model's gradients as histograms. | |
| Helper handler to log model's gradients as scalars. | |
| Helper handler to log optimizer parameters | |
| Helper handler to log engine's output and/or metrics | |
| Helper handler to log model's weights as histograms. | |
| Helper handler to log model's weights as scalars. | 
- class ignite.contrib.handlers.clearml_logger.ClearMLLogger(**kwargs)[source]#
- ClearML handler to log metrics, text, model/optimizer parameters, plots during training and validation. Also supports model checkpoints logging and upload to the storage solution of your choice (i.e. ClearML File server, S3 bucket etc.) - pip install clearml clearml-init - Parameters
- kwargs (Any) – Keyword arguments accepted from - Task.initmethod. All arguments are optional. If a ClearML Task has already been created, kwargs will be ignored and the current ClearML Task will be used.
 - Examples - from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log training loss at each iteration clearml_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer` instead of `train_evaluator`. clearml_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the # `trainer` instead of `evaluator`. clearml_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer)), ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration clearml_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name='lr' # optional ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model) ) 
- class ignite.contrib.handlers.clearml_logger.ClearMLSaver(logger=None, output_uri=None, dirname=None, *args, **kwargs)[source]#
- Handler that saves input checkpoint as ClearML artifacts - Parameters
- logger (Optional[ClearMLLogger]) – An instance of - ClearMLLogger, ensuring a valid ClearML- Taskhas been initialized. If not provided, and a ClearML Task has not been manually initialized, a runtime error will be raised.
- output_uri (Optional[str]) – The default location for output models and other artifacts uploaded by ClearML. For more information, see - clearml.Task.init.
- dirname (Optional[str]) – Directory path where the checkpoint will be saved. If not provided, a temporary directory will be created. 
- args (Any) – 
- kwargs (Any) – 
 
 - Examples - from ignite.contrib.handlers.clearml_logger import * from ignite.handlers import Checkpoint clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) to_save = {"model": model} handler = Checkpoint( to_save, ClearMLSaver(), n_saved=1, score_function=lambda e: 123, score_name="acc", filename_prefix="best", global_step_transform=global_step_from_engine(trainer) ) validation_evaluator.add_event_handler(Events.EVENT_COMPLETED, handler) 
- class ignite.contrib.handlers.clearml_logger.GradsHistHandler(model, tag=None, whitelist=None)[source]#
- Helper handler to log model’s gradients as histograms. - Parameters
- model (Module) – model to log weights 
- tag (Optional[str]) – common title for all produced plots. For example, ‘generator’ 
- whitelist (Optional[Union[List[str], Callable[[str, Parameter], bool]]]) – specific gradients to log. Should be list of model’s submodules or parameters names, or a callable which gets weight along with its name and determines if its gradient should be logged. Names should be fully-qualified. For more information please refer to PyTorch docs. If not given, all of model’s gradients are logged. 
 
 - Examples - from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model) ) - from ignite.contrib.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log gradient of `fc.bias` clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model, whitelist=['fc.bias']) ) - from ignite.contrib.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log gradient of weights which have shape (2, 1) def has_shape_2_1(n, p): return p.shape == (2,1) clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model, whitelist=has_shape_2_1) ) - Changed in version 0.4.9: optional argument whitelist added. 
- class ignite.contrib.handlers.clearml_logger.GradsScalarHandler(model, reduction=<function norm>, tag=None, whitelist=None)[source]#
- Helper handler to log model’s gradients as scalars. Handler, upon construction, iterates over named parameters of the model and keep reference to ones permitted by the whitelist. Then at every call, applies reduction function to each parameter’s gradient, produces a scalar and logs it. - Parameters
- model (Module) – model to log weights 
- reduction (Callable[[Tensor], Union[float, Tensor]]) – function to reduce parameters into scalar 
- tag (Optional[str]) – common title for all produced plots. For example, “generator” 
- whitelist (Optional[Union[List[str], Callable[[str, Parameter], bool]]]) – - specific gradients to log. Should be list of model’s submodules or parameters names, or a callable which gets weight along with its name and determines if its gradient should be logged. Names should be fully-qualified. For more information please refer to PyTorch docs. If not given, all of model’s gradients are logged. 
 
 - Examples - from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, reduction=torch.norm) ) - from ignite.contrib.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log gradient of `base` clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler( model, reduction=torch.norm, whitelist=['base'] ) ) - from ignite.contrib.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log gradient of weights which belong to a `fc` layer def is_in_fc_layer(n, p): return 'fc' in n clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, whitelist=is_in_fc_layer) ) - Changed in version 0.4.9: optional argument whitelist added. 
- class ignite.contrib.handlers.clearml_logger.OptimizerParamsHandler(optimizer, param_name='lr', tag=None)[source]#
- Helper handler to log optimizer parameters - Parameters
 - Examples - from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration clearml_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently clearml_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer ) 
- class ignite.contrib.handlers.clearml_logger.OutputHandler(tag, metric_names=None, output_transform=None, global_step_transform=None, state_attributes=None)[source]#
- Helper handler to log engine’s output and/or metrics - Parameters
- tag (str) – common title for all produced plots. For example, “training” 
- metric_names (Optional[List[str]]) – list of metric names to plot or a string “all” to plot all available metrics. 
- output_transform (Optional[Callable]) – output transform function to prepare engine.state.output as a number. For example, output_transform = lambda output: output This function can also return a dictionary, e.g {“loss”: loss1, “another_loss”: loss2} to label the plot with corresponding keys. 
- global_step_transform (Optional[Callable]) – global step transform function to output a desired global step. Input of the function is (engine, event_name). Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use - global_step_from_engine().
- state_attributes (Optional[List[str]]) – list of attributes of the - trainer.stateto plot.
 
 - Examples - from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer`: clearml_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ), event_name=Events.EPOCH_COMPLETED ) # or equivalently clearml_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ) - Another example, where model is evaluated every 500 iterations: - from ignite.contrib.handlers.clearml_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on ClearML. clearml_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform ) - Another example where the State Attributes - trainer.state.alphaand- trainer.state.betaare also logged along with the NLL and Accuracy after each iteration:- clearml_logger.attach( trainer, log_handler=OutputHandler( tag="training", metric_names=["nll", "accuracy"], state_attributes=["alpha", "beta"], ), event_name=Events.ITERATION_COMPLETED ) - Example of global_step_transform - def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name) - Changed in version 0.4.7: accepts an optional list of state_attributes 
- class ignite.contrib.handlers.clearml_logger.WeightsHistHandler(model, tag=None, whitelist=None)[source]#
- Helper handler to log model’s weights as histograms. - Parameters
- model (Module) – model to log weights 
- tag (Optional[str]) – common title for all produced plots. For example, ‘generator’ 
- whitelist (Optional[Union[List[str], Callable[[str, Parameter], bool]]]) – - specific weights to log. Should be list of model’s submodules or parameters names, or a callable which gets weight along with its name and determines if it should be logged. Names should be fully-qualified. For more information please refer to PyTorch docs. If not given, all of model’s weights are logged. 
 
 - Examples - from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model) ) - from ignite.contrib.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log weights of `fc` layer weights = ['fc'] # Attach the logger to the trainer to log weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model, whitelist=weights) ) - from ignite.contrib.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log weights which name include 'conv'. weight_selector = lambda name, p: 'conv' in name # Attach the logger to the trainer to log weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model, whitelist=weight_selector) ) - Changed in version 0.4.9: optional argument whitelist added. 
- class ignite.contrib.handlers.clearml_logger.WeightsScalarHandler(model, reduction=<function norm>, tag=None, whitelist=None)[source]#
- Helper handler to log model’s weights as scalars. Handler, upon construction, iterates over named parameters of the model and keep reference to ones permitted by whitelist. Then at every call, applies reduction function to each parameter, produces a scalar and logs it. - Parameters
- model (Module) – model to log weights 
- reduction (Callable[[Tensor], Union[float, Tensor]]) – function to reduce parameters into scalar 
- tag (Optional[str]) – common title for all produced plots. For example, “generator” 
- whitelist (Optional[Union[List[str], Callable[[str, Parameter], bool]]]) – - specific weights to log. Should be list of model’s submodules or parameters names, or a callable which gets weight along with its name and determines if it should be logged. Names should be fully-qualified. For more information please refer to PyTorch docs. If not given, all of model’s weights are logged. 
 
 - Examples - from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, reduction=torch.norm) ) - from ignite.contrib.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log only `fc` weights clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler( model, whitelist=['fc'] ) ) - from ignite.contrib.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log weights which have `bias` in their names def has_bias_in_name(n, p): return 'bias' in n clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, whitelist=has_bias_in_name) ) - Changed in version 0.4.9: optional argument whitelist added.