Rate this Page

(beta) Building a Simple CPU Performance Profiler with FX#

Created On: Mar 04, 2021 | Last Updated: Jul 14, 2025 | Last Verified: Not Verified

Author: James Reed

In this tutorial, we are going to use FX to do the following:

  1. Capture PyTorch Python code in a way that we can inspect and gather statistics about the structure and execution of the code

  2. Build out a small class that will serve as a simple performance “profiler”, collecting runtime statistics about each part of the model from actual runs.

For this tutorial, we are going to use the torchvision ResNet18 model for demonstration purposes.

import torch
import torch.fx
import torchvision.models as models

rn18 = models.resnet18()
rn18.eval()
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=512, out_features=1000, bias=True)
)

Now that we have our model, we want to inspect deeper into its performance. That is, for the following invocation, which parts of the model are taking the longest?

input = torch.randn(5, 3, 224, 224)
output = rn18(input)

A common way of answering that question is to go through the program source, add code that collects timestamps at various points in the program, and compare the difference between those timestamps to see how long the regions between the timestamps take.

That technique is certainly applicable to PyTorch code, however it would be nicer if we didn’t have to copy over model code and edit it, especially code we haven’t written (like this torchvision model). Instead, we are going to use FX to automate this “instrumentation” process without needing to modify any source.

First, let’s get some imports out of the way (we will be using all of these later in the code).

import statistics, tabulate, time
from typing import Any, Dict, List
from torch.fx import Interpreter

Note

tabulate is an external library that is not a dependency of PyTorch. We will be using it to more easily visualize performance data. Please make sure you’ve installed it from your favorite Python package source.

Capturing the Model with Symbolic Tracing#

Next, we are going to use FX’s symbolic tracing mechanism to capture the definition of our model in a data structure we can manipulate and examine.

traced_rn18 = torch.fx.symbolic_trace(rn18)
print(traced_rn18.graph)
graph():
    %x : torch.Tensor [num_users=1] = placeholder[target=x]
    %conv1 : [num_users=1] = call_module[target=conv1](args = (%x,), kwargs = {})
    %bn1 : [num_users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {})
    %relu : [num_users=1] = call_module[target=relu](args = (%bn1,), kwargs = {})
    %maxpool : [num_users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {})
    %layer1_0_conv1 : [num_users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {})
    %layer1_0_bn1 : [num_users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {})
    %layer1_0_relu : [num_users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {})
    %layer1_0_conv2 : [num_users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {})
    %layer1_0_bn2 : [num_users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {})
    %add : [num_users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {})
    %layer1_0_relu_1 : [num_users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {})
    %layer1_1_conv1 : [num_users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {})
    %layer1_1_bn1 : [num_users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {})
    %layer1_1_relu : [num_users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {})
    %layer1_1_conv2 : [num_users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {})
    %layer1_1_bn2 : [num_users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {})
    %add_1 : [num_users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {})
    %layer1_1_relu_1 : [num_users=2] = call_module[target=layer1.1.relu](args = (%add_1,), kwargs = {})
    %layer2_0_conv1 : [num_users=1] = call_module[target=layer2.0.conv1](args = (%layer1_1_relu_1,), kwargs = {})
    %layer2_0_bn1 : [num_users=1] = call_module[target=layer2.0.bn1](args = (%layer2_0_conv1,), kwargs = {})
    %layer2_0_relu : [num_users=1] = call_module[target=layer2.0.relu](args = (%layer2_0_bn1,), kwargs = {})
    %layer2_0_conv2 : [num_users=1] = call_module[target=layer2.0.conv2](args = (%layer2_0_relu,), kwargs = {})
    %layer2_0_bn2 : [num_users=1] = call_module[target=layer2.0.bn2](args = (%layer2_0_conv2,), kwargs = {})
    %layer2_0_downsample_0 : [num_users=1] = call_module[target=layer2.0.downsample.0](args = (%layer1_1_relu_1,), kwargs = {})
    %layer2_0_downsample_1 : [num_users=1] = call_module[target=layer2.0.downsample.1](args = (%layer2_0_downsample_0,), kwargs = {})
    %add_2 : [num_users=1] = call_function[target=operator.add](args = (%layer2_0_bn2, %layer2_0_downsample_1), kwargs = {})
    %layer2_0_relu_1 : [num_users=2] = call_module[target=layer2.0.relu](args = (%add_2,), kwargs = {})
    %layer2_1_conv1 : [num_users=1] = call_module[target=layer2.1.conv1](args = (%layer2_0_relu_1,), kwargs = {})
    %layer2_1_bn1 : [num_users=1] = call_module[target=layer2.1.bn1](args = (%layer2_1_conv1,), kwargs = {})
    %layer2_1_relu : [num_users=1] = call_module[target=layer2.1.relu](args = (%layer2_1_bn1,), kwargs = {})
    %layer2_1_conv2 : [num_users=1] = call_module[target=layer2.1.conv2](args = (%layer2_1_relu,), kwargs = {})
    %layer2_1_bn2 : [num_users=1] = call_module[target=layer2.1.bn2](args = (%layer2_1_conv2,), kwargs = {})
    %add_3 : [num_users=1] = call_function[target=operator.add](args = (%layer2_1_bn2, %layer2_0_relu_1), kwargs = {})
    %layer2_1_relu_1 : [num_users=2] = call_module[target=layer2.1.relu](args = (%add_3,), kwargs = {})
    %layer3_0_conv1 : [num_users=1] = call_module[target=layer3.0.conv1](args = (%layer2_1_relu_1,), kwargs = {})
    %layer3_0_bn1 : [num_users=1] = call_module[target=layer3.0.bn1](args = (%layer3_0_conv1,), kwargs = {})
    %layer3_0_relu : [num_users=1] = call_module[target=layer3.0.relu](args = (%layer3_0_bn1,), kwargs = {})
    %layer3_0_conv2 : [num_users=1] = call_module[target=layer3.0.conv2](args = (%layer3_0_relu,), kwargs = {})
    %layer3_0_bn2 : [num_users=1] = call_module[target=layer3.0.bn2](args = (%layer3_0_conv2,), kwargs = {})
    %layer3_0_downsample_0 : [num_users=1] = call_module[target=layer3.0.downsample.0](args = (%layer2_1_relu_1,), kwargs = {})
    %layer3_0_downsample_1 : [num_users=1] = call_module[target=layer3.0.downsample.1](args = (%layer3_0_downsample_0,), kwargs = {})
    %add_4 : [num_users=1] = call_function[target=operator.add](args = (%layer3_0_bn2, %layer3_0_downsample_1), kwargs = {})
    %layer3_0_relu_1 : [num_users=2] = call_module[target=layer3.0.relu](args = (%add_4,), kwargs = {})
    %layer3_1_conv1 : [num_users=1] = call_module[target=layer3.1.conv1](args = (%layer3_0_relu_1,), kwargs = {})
    %layer3_1_bn1 : [num_users=1] = call_module[target=layer3.1.bn1](args = (%layer3_1_conv1,), kwargs = {})
    %layer3_1_relu : [num_users=1] = call_module[target=layer3.1.relu](args = (%layer3_1_bn1,), kwargs = {})
    %layer3_1_conv2 : [num_users=1] = call_module[target=layer3.1.conv2](args = (%layer3_1_relu,), kwargs = {})
    %layer3_1_bn2 : [num_users=1] = call_module[target=layer3.1.bn2](args = (%layer3_1_conv2,), kwargs = {})
    %add_5 : [num_users=1] = call_function[target=operator.add](args = (%layer3_1_bn2, %layer3_0_relu_1), kwargs = {})
    %layer3_1_relu_1 : [num_users=2] = call_module[target=layer3.1.relu](args = (%add_5,), kwargs = {})
    %layer4_0_conv1 : [num_users=1] = call_module[target=layer4.0.conv1](args = (%layer3_1_relu_1,), kwargs = {})
    %layer4_0_bn1 : [num_users=1] = call_module[target=layer4.0.bn1](args = (%layer4_0_conv1,), kwargs = {})
    %layer4_0_relu : [num_users=1] = call_module[target=layer4.0.relu](args = (%layer4_0_bn1,), kwargs = {})
    %layer4_0_conv2 : [num_users=1] = call_module[target=layer4.0.conv2](args = (%layer4_0_relu,), kwargs = {})
    %layer4_0_bn2 : [num_users=1] = call_module[target=layer4.0.bn2](args = (%layer4_0_conv2,), kwargs = {})
    %layer4_0_downsample_0 : [num_users=1] = call_module[target=layer4.0.downsample.0](args = (%layer3_1_relu_1,), kwargs = {})
    %layer4_0_downsample_1 : [num_users=1] = call_module[target=layer4.0.downsample.1](args = (%layer4_0_downsample_0,), kwargs = {})
    %add_6 : [num_users=1] = call_function[target=operator.add](args = (%layer4_0_bn2, %layer4_0_downsample_1), kwargs = {})
    %layer4_0_relu_1 : [num_users=2] = call_module[target=layer4.0.relu](args = (%add_6,), kwargs = {})
    %layer4_1_conv1 : [num_users=1] = call_module[target=layer4.1.conv1](args = (%layer4_0_relu_1,), kwargs = {})
    %layer4_1_bn1 : [num_users=1] = call_module[target=layer4.1.bn1](args = (%layer4_1_conv1,), kwargs = {})
    %layer4_1_relu : [num_users=1] = call_module[target=layer4.1.relu](args = (%layer4_1_bn1,), kwargs = {})
    %layer4_1_conv2 : [num_users=1] = call_module[target=layer4.1.conv2](args = (%layer4_1_relu,), kwargs = {})
    %layer4_1_bn2 : [num_users=1] = call_module[target=layer4.1.bn2](args = (%layer4_1_conv2,), kwargs = {})
    %add_7 : [num_users=1] = call_function[target=operator.add](args = (%layer4_1_bn2, %layer4_0_relu_1), kwargs = {})
    %layer4_1_relu_1 : [num_users=1] = call_module[target=layer4.1.relu](args = (%add_7,), kwargs = {})
    %avgpool : [num_users=1] = call_module[target=avgpool](args = (%layer4_1_relu_1,), kwargs = {})
    %flatten : [num_users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {})
    %fc : [num_users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
    return fc

This gives us a Graph representation of the ResNet18 model. A Graph consists of a series of Nodes connected to each other. Each Node represents a call-site in the Python code (whether to a function, a module, or a method) and the edges (represented as args and kwargs on each node) represent the values passed between these call-sites. More information about the Graph representation and the rest of FX’s APIs ca be found at the FX documentation https://pytorch.org/docs/master/fx.html.

Creating a Profiling Interpreter#

Next, we are going to create a class that inherits from torch.fx.Interpreter. Though the GraphModule that symbolic_trace produces compiles Python code that is run when you call a GraphModule, an alternative way to run a GraphModule is by executing each Node in the Graph one by one. That is the functionality that Interpreter provides: It interprets the graph node- by-node.

By inheriting from Interpreter, we can override various functionality and install the profiling behavior we want. The goal is to have an object to which we can pass a model, invoke the model 1 or more times, then get statistics about how long the model and each part of the model took during those runs.

Let’s define our ProfilingInterpreter class:

class ProfilingInterpreter(Interpreter):
    def __init__(self, mod : torch.nn.Module):
        # Rather than have the user symbolically trace their model,
        # we're going to do it in the constructor. As a result, the
        # user can pass in any ``Module`` without having to worry about
        # symbolic tracing APIs
        gm = torch.fx.symbolic_trace(mod)
        super().__init__(gm)

        # We are going to store away two things here:
        #
        # 1. A list of total runtimes for ``mod``. In other words, we are
        #    storing away the time ``mod(...)`` took each time this
        #    interpreter is called.
        self.total_runtime_sec : List[float] = []
        # 2. A map from ``Node`` to a list of times (in seconds) that
        #    node took to run. This can be seen as similar to (1) but
        #    for specific sub-parts of the model.
        self.runtimes_sec : Dict[torch.fx.Node, List[float]] = {}

    ######################################################################
    # Next, let's override our first method: ``run()``. ``Interpreter``'s ``run``
    # method is the top-level entry point for execution of the model. We will
    # want to intercept this so that we can record the total runtime of the
    # model.

    def run(self, *args) -> Any:
        # Record the time we started running the model
        t_start = time.time()
        # Run the model by delegating back into Interpreter.run()
        return_val = super().run(*args)
        # Record the time we finished running the model
        t_end = time.time()
        # Store the total elapsed time this model execution took in the
        # ``ProfilingInterpreter``
        self.total_runtime_sec.append(t_end - t_start)
        return return_val

    ######################################################################
    # Now, let's override ``run_node``. ``Interpreter`` calls ``run_node`` each
    # time it executes a single node. We will intercept this so that we
    # can measure and record the time taken for each individual call in
    # the model.

    def run_node(self, n : torch.fx.Node) -> Any:
        # Record the time we started running the op
        t_start = time.time()
        # Run the op by delegating back into Interpreter.run_node()
        return_val = super().run_node(n)
        # Record the time we finished running the op
        t_end = time.time()
        # If we don't have an entry for this node in our runtimes_sec
        # data structure, add one with an empty list value.
        self.runtimes_sec.setdefault(n, [])
        # Record the total elapsed time for this single invocation
        # in the runtimes_sec data structure
        self.runtimes_sec[n].append(t_end - t_start)
        return return_val

    ######################################################################
    # Finally, we are going to define a method (one which doesn't override
    # any ``Interpreter`` method) that provides us a nice, organized view of
    # the data we have collected.

    def summary(self, should_sort : bool = False) -> str:
        # Build up a list of summary information for each node
        node_summaries : List[List[Any]] = []
        # Calculate the mean runtime for the whole network. Because the
        # network may have been called multiple times during profiling,
        # we need to summarize the runtimes. We choose to use the
        # arithmetic mean for this.
        mean_total_runtime = statistics.mean(self.total_runtime_sec)

        # For each node, record summary statistics
        for node, runtimes in self.runtimes_sec.items():
            # Similarly, compute the mean runtime for ``node``
            mean_runtime = statistics.mean(runtimes)
            # For easier understanding, we also compute the percentage
            # time each node took with respect to the whole network.
            pct_total = mean_runtime / mean_total_runtime * 100
            # Record the node's type, name of the node, mean runtime, and
            # percent runtime.
            node_summaries.append(
                [node.op, str(node), mean_runtime, pct_total])

        # One of the most important questions to answer when doing performance
        # profiling is "Which op(s) took the longest?". We can make this easy
        # to see by providing sorting functionality in our summary view
        if should_sort:
            node_summaries.sort(key=lambda s: s[2], reverse=True)

        # Use the ``tabulate`` library to create a well-formatted table
        # presenting our summary information
        headers : List[str] = [
            'Op type', 'Op', 'Average runtime (s)', 'Pct total runtime'
        ]
        return tabulate.tabulate(node_summaries, headers=headers)

Note

We use Python’s time.time function to pull wall clock timestamps and compare them. This is not the most accurate way to measure performance, and will only give us a first- order approximation. We use this simple technique only for the purpose of demonstration in this tutorial.

Investigating the Performance of ResNet18#

We can now use ProfilingInterpreter to inspect the performance characteristics of our ResNet18 model;

interp = ProfilingInterpreter(rn18)
interp.run(input)
print(interp.summary(True))
Op type        Op                       Average runtime (s)    Pct total runtime
-------------  ---------------------  ---------------------  -------------------
call_module    maxpool                          0.0045743              8.13573
call_module    conv1                            0.00442696             7.87367
call_module    layer4_0_conv2                   0.00311852             5.54651
call_module    layer1_0_conv1                   0.0031054              5.52319
call_module    layer4_1_conv1                   0.00302172             5.37435
call_module    layer4_1_conv2                   0.0029726              5.28699
call_module    layer1_0_conv2                   0.00289536             5.1496
call_module    layer1_1_conv2                   0.00261903             4.65813
call_module    layer1_1_conv1                   0.0023427              4.16667
call_module    layer2_1_conv2                   0.00231743             4.12172
call_module    layer3_1_conv1                   0.00223947             3.98306
call_module    layer2_0_conv2                   0.00216913             3.85796
call_module    layer3_0_conv2                   0.00213075             3.78969
call_module    layer3_1_conv2                   0.00209665             3.72905
call_module    layer2_1_conv1                   0.0020051              3.56622
call_module    layer4_0_conv1                   0.00193405             3.43985
call_module    bn1                              0.00143695             2.55572
call_module    layer3_0_conv1                   0.00130773             2.32589
call_module    layer2_0_conv1                   0.00123787             2.20164
call_module    layer2_0_downsample_0            0.000778675            1.38493
call_module    layer4_0_downsample_0            0.000468969            0.834097
call_module    layer3_0_downsample_0            0.000451803            0.803565
call_function  add                              0.000429153            0.763281
call_function  add_1                            0.000393152            0.69925
call_module    layer1_0_bn1                     0.00032258             0.573733
call_module    relu                             0.000302553            0.538113
call_module    layer1_0_bn2                     0.000296831            0.527936
call_module    layer1_1_bn2                     0.000272989            0.485532
call_function  add_3                            0.000231981            0.412596
call_module    layer2_0_bn1                     0.000195503            0.347717
call_module    fc                               0.000195026            0.346869
call_module    layer2_1_bn2                     0.000177145            0.315065
call_module    layer1_1_bn1                     0.000142336            0.253155
call_module    avgpool                          0.000131369            0.233649
call_module    layer2_0_downsample_1            0.000127316            0.22644
call_module    layer3_1_bn2                     0.000111103            0.197605
call_module    layer4_1_bn2                     0.000106096            0.1887
call_module    layer3_0_bn2                     0.000100136            0.178099
call_module    layer4_0_bn2                     9.87053e-05            0.175555
call_module    layer1_0_relu                    9.799e-05              0.174283
call_module    layer2_0_relu                    9.75132e-05            0.173434
call_module    layer1_0_relu_1                  9.08375e-05            0.161561
call_module    layer4_1_bn1                     8.70228e-05            0.154776
call_module    layer1_1_relu_1                  8.67844e-05            0.154352
call_function  add_2                            7.96318e-05            0.141631
call_module    layer2_0_bn2                     7.89165e-05            0.140359
call_module    layer2_1_bn1                     7.86781e-05            0.139935
call_function  add_5                            7.58171e-05            0.134846
call_module    layer1_1_relu                    7.22408e-05            0.128486
call_module    layer4_0_downsample_1            7.12872e-05            0.126789
call_module    layer3_0_downsample_1            7.08103e-05            0.125941
call_module    layer4_0_bn1                     6.93798e-05            0.123397
call_module    layer3_0_bn1                     6.77109e-05            0.120429
call_module    layer3_1_bn1                     6.77109e-05            0.120429
call_function  add_7                            6.60419e-05            0.11746
call_function  add_6                            6.1512e-05             0.109404
call_function  add_4                            5.60284e-05            0.0996506
call_module    layer4_1_relu                    5.31673e-05            0.094562
call_module    layer4_0_relu                    4.79221e-05            0.0852331
call_module    layer2_1_relu_1                  4.76837e-05            0.084809
call_module    layer4_1_relu_1                  4.76837e-05            0.084809
call_module    layer2_0_relu_1                  4.45843e-05            0.0792964
call_module    layer4_0_relu_1                  4.22001e-05            0.075056
call_module    layer2_1_relu                    4.1008e-05             0.0729357
call_module    layer3_0_relu_1                  3.95775e-05            0.0703915
call_module    layer3_0_relu                    3.83854e-05            0.0682713
call_module    layer3_1_relu                    3.76701e-05            0.0669991
call_module    layer3_1_relu_1                  3.43323e-05            0.0610625
call_function  flatten                          2.83718e-05            0.0504614
placeholder    x                                2.07424e-05            0.0368919
output         output                           8.82149e-06            0.0156897

There are two things we should call out here:

Conclusion#

As we can see, using FX we can easily capture PyTorch programs (even ones we don’t have the source code for!) in a machine-interpretable format and use that for analysis, such as the performance analysis we’ve done here. FX opens up an exciting world of possibilities for working with PyTorch programs.

Finally, since FX is still in beta, we would be happy to hear any feedback you have about using it. Please feel free to use the PyTorch Forums (https://discuss.pytorch.org/) and the issue tracker (pytorch/pytorch#issues) to provide any feedback you might have.

Total running time of the script: (0 minutes 0.308 seconds)