Note
Go to the end to download the full example code.
(beta) Building a Simple CPU Performance Profiler with FX#
Created On: Mar 04, 2021 | Last Updated: Jul 14, 2025 | Last Verified: Not Verified
Author: James Reed
In this tutorial, we are going to use FX to do the following:
Capture PyTorch Python code in a way that we can inspect and gather statistics about the structure and execution of the code
Build out a small class that will serve as a simple performance “profiler”, collecting runtime statistics about each part of the model from actual runs.
For this tutorial, we are going to use the torchvision ResNet18 model for demonstration purposes.
import torch
import torch.fx
import torchvision.models as models
rn18 = models.resnet18()
rn18.eval()
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=512, out_features=1000, bias=True)
)
Now that we have our model, we want to inspect deeper into its performance. That is, for the following invocation, which parts of the model are taking the longest?
input = torch.randn(5, 3, 224, 224)
output = rn18(input)
A common way of answering that question is to go through the program source, add code that collects timestamps at various points in the program, and compare the difference between those timestamps to see how long the regions between the timestamps take.
That technique is certainly applicable to PyTorch code, however it would be nicer if we didn’t have to copy over model code and edit it, especially code we haven’t written (like this torchvision model). Instead, we are going to use FX to automate this “instrumentation” process without needing to modify any source.
First, let’s get some imports out of the way (we will be using all of these later in the code).
import statistics, tabulate, time
from typing import Any, Dict, List
from torch.fx import Interpreter
Note
tabulate is an external library that is not a dependency of PyTorch.
We will be using it to more easily visualize performance data. Please
make sure you’ve installed it from your favorite Python package source.
Capturing the Model with Symbolic Tracing#
Next, we are going to use FX’s symbolic tracing mechanism to capture the definition of our model in a data structure we can manipulate and examine.
traced_rn18 = torch.fx.symbolic_trace(rn18)
print(traced_rn18.graph)
graph():
    %x : torch.Tensor [num_users=1] = placeholder[target=x]
    %conv1 : [num_users=1] = call_module[target=conv1](args = (%x,), kwargs = {})
    %bn1 : [num_users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {})
    %relu : [num_users=1] = call_module[target=relu](args = (%bn1,), kwargs = {})
    %maxpool : [num_users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {})
    %layer1_0_conv1 : [num_users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {})
    %layer1_0_bn1 : [num_users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {})
    %layer1_0_relu : [num_users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {})
    %layer1_0_conv2 : [num_users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {})
    %layer1_0_bn2 : [num_users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {})
    %add : [num_users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {})
    %layer1_0_relu_1 : [num_users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {})
    %layer1_1_conv1 : [num_users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {})
    %layer1_1_bn1 : [num_users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {})
    %layer1_1_relu : [num_users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {})
    %layer1_1_conv2 : [num_users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {})
    %layer1_1_bn2 : [num_users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {})
    %add_1 : [num_users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {})
    %layer1_1_relu_1 : [num_users=2] = call_module[target=layer1.1.relu](args = (%add_1,), kwargs = {})
    %layer2_0_conv1 : [num_users=1] = call_module[target=layer2.0.conv1](args = (%layer1_1_relu_1,), kwargs = {})
    %layer2_0_bn1 : [num_users=1] = call_module[target=layer2.0.bn1](args = (%layer2_0_conv1,), kwargs = {})
    %layer2_0_relu : [num_users=1] = call_module[target=layer2.0.relu](args = (%layer2_0_bn1,), kwargs = {})
    %layer2_0_conv2 : [num_users=1] = call_module[target=layer2.0.conv2](args = (%layer2_0_relu,), kwargs = {})
    %layer2_0_bn2 : [num_users=1] = call_module[target=layer2.0.bn2](args = (%layer2_0_conv2,), kwargs = {})
    %layer2_0_downsample_0 : [num_users=1] = call_module[target=layer2.0.downsample.0](args = (%layer1_1_relu_1,), kwargs = {})
    %layer2_0_downsample_1 : [num_users=1] = call_module[target=layer2.0.downsample.1](args = (%layer2_0_downsample_0,), kwargs = {})
    %add_2 : [num_users=1] = call_function[target=operator.add](args = (%layer2_0_bn2, %layer2_0_downsample_1), kwargs = {})
    %layer2_0_relu_1 : [num_users=2] = call_module[target=layer2.0.relu](args = (%add_2,), kwargs = {})
    %layer2_1_conv1 : [num_users=1] = call_module[target=layer2.1.conv1](args = (%layer2_0_relu_1,), kwargs = {})
    %layer2_1_bn1 : [num_users=1] = call_module[target=layer2.1.bn1](args = (%layer2_1_conv1,), kwargs = {})
    %layer2_1_relu : [num_users=1] = call_module[target=layer2.1.relu](args = (%layer2_1_bn1,), kwargs = {})
    %layer2_1_conv2 : [num_users=1] = call_module[target=layer2.1.conv2](args = (%layer2_1_relu,), kwargs = {})
    %layer2_1_bn2 : [num_users=1] = call_module[target=layer2.1.bn2](args = (%layer2_1_conv2,), kwargs = {})
    %add_3 : [num_users=1] = call_function[target=operator.add](args = (%layer2_1_bn2, %layer2_0_relu_1), kwargs = {})
    %layer2_1_relu_1 : [num_users=2] = call_module[target=layer2.1.relu](args = (%add_3,), kwargs = {})
    %layer3_0_conv1 : [num_users=1] = call_module[target=layer3.0.conv1](args = (%layer2_1_relu_1,), kwargs = {})
    %layer3_0_bn1 : [num_users=1] = call_module[target=layer3.0.bn1](args = (%layer3_0_conv1,), kwargs = {})
    %layer3_0_relu : [num_users=1] = call_module[target=layer3.0.relu](args = (%layer3_0_bn1,), kwargs = {})
    %layer3_0_conv2 : [num_users=1] = call_module[target=layer3.0.conv2](args = (%layer3_0_relu,), kwargs = {})
    %layer3_0_bn2 : [num_users=1] = call_module[target=layer3.0.bn2](args = (%layer3_0_conv2,), kwargs = {})
    %layer3_0_downsample_0 : [num_users=1] = call_module[target=layer3.0.downsample.0](args = (%layer2_1_relu_1,), kwargs = {})
    %layer3_0_downsample_1 : [num_users=1] = call_module[target=layer3.0.downsample.1](args = (%layer3_0_downsample_0,), kwargs = {})
    %add_4 : [num_users=1] = call_function[target=operator.add](args = (%layer3_0_bn2, %layer3_0_downsample_1), kwargs = {})
    %layer3_0_relu_1 : [num_users=2] = call_module[target=layer3.0.relu](args = (%add_4,), kwargs = {})
    %layer3_1_conv1 : [num_users=1] = call_module[target=layer3.1.conv1](args = (%layer3_0_relu_1,), kwargs = {})
    %layer3_1_bn1 : [num_users=1] = call_module[target=layer3.1.bn1](args = (%layer3_1_conv1,), kwargs = {})
    %layer3_1_relu : [num_users=1] = call_module[target=layer3.1.relu](args = (%layer3_1_bn1,), kwargs = {})
    %layer3_1_conv2 : [num_users=1] = call_module[target=layer3.1.conv2](args = (%layer3_1_relu,), kwargs = {})
    %layer3_1_bn2 : [num_users=1] = call_module[target=layer3.1.bn2](args = (%layer3_1_conv2,), kwargs = {})
    %add_5 : [num_users=1] = call_function[target=operator.add](args = (%layer3_1_bn2, %layer3_0_relu_1), kwargs = {})
    %layer3_1_relu_1 : [num_users=2] = call_module[target=layer3.1.relu](args = (%add_5,), kwargs = {})
    %layer4_0_conv1 : [num_users=1] = call_module[target=layer4.0.conv1](args = (%layer3_1_relu_1,), kwargs = {})
    %layer4_0_bn1 : [num_users=1] = call_module[target=layer4.0.bn1](args = (%layer4_0_conv1,), kwargs = {})
    %layer4_0_relu : [num_users=1] = call_module[target=layer4.0.relu](args = (%layer4_0_bn1,), kwargs = {})
    %layer4_0_conv2 : [num_users=1] = call_module[target=layer4.0.conv2](args = (%layer4_0_relu,), kwargs = {})
    %layer4_0_bn2 : [num_users=1] = call_module[target=layer4.0.bn2](args = (%layer4_0_conv2,), kwargs = {})
    %layer4_0_downsample_0 : [num_users=1] = call_module[target=layer4.0.downsample.0](args = (%layer3_1_relu_1,), kwargs = {})
    %layer4_0_downsample_1 : [num_users=1] = call_module[target=layer4.0.downsample.1](args = (%layer4_0_downsample_0,), kwargs = {})
    %add_6 : [num_users=1] = call_function[target=operator.add](args = (%layer4_0_bn2, %layer4_0_downsample_1), kwargs = {})
    %layer4_0_relu_1 : [num_users=2] = call_module[target=layer4.0.relu](args = (%add_6,), kwargs = {})
    %layer4_1_conv1 : [num_users=1] = call_module[target=layer4.1.conv1](args = (%layer4_0_relu_1,), kwargs = {})
    %layer4_1_bn1 : [num_users=1] = call_module[target=layer4.1.bn1](args = (%layer4_1_conv1,), kwargs = {})
    %layer4_1_relu : [num_users=1] = call_module[target=layer4.1.relu](args = (%layer4_1_bn1,), kwargs = {})
    %layer4_1_conv2 : [num_users=1] = call_module[target=layer4.1.conv2](args = (%layer4_1_relu,), kwargs = {})
    %layer4_1_bn2 : [num_users=1] = call_module[target=layer4.1.bn2](args = (%layer4_1_conv2,), kwargs = {})
    %add_7 : [num_users=1] = call_function[target=operator.add](args = (%layer4_1_bn2, %layer4_0_relu_1), kwargs = {})
    %layer4_1_relu_1 : [num_users=1] = call_module[target=layer4.1.relu](args = (%add_7,), kwargs = {})
    %avgpool : [num_users=1] = call_module[target=avgpool](args = (%layer4_1_relu_1,), kwargs = {})
    %flatten : [num_users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {})
    %fc : [num_users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
    return fc
This gives us a Graph representation of the ResNet18 model. A Graph
consists of a series of Nodes connected to each other. Each Node
represents a call-site in the Python code (whether to a function,
a module, or a method) and the edges (represented as args and kwargs
on each node) represent the values passed between these call-sites. More
information about the Graph representation and the rest of FX’s APIs ca
be found at the FX documentation https://pytorch.org/docs/master/fx.html.
Creating a Profiling Interpreter#
Next, we are going to create a class that inherits from torch.fx.Interpreter.
Though the GraphModule that symbolic_trace produces compiles Python code
that is run when you call a GraphModule, an alternative way to run a
GraphModule is by executing each Node in the Graph one by one. That is
the functionality that Interpreter provides: It interprets the graph node-
by-node.
By inheriting from Interpreter, we can override various functionality and
install the profiling behavior we want. The goal is to have an object to which
we can pass a model, invoke the model 1 or more times, then get statistics about
how long the model and each part of the model took during those runs.
Let’s define our ProfilingInterpreter class:
class ProfilingInterpreter(Interpreter):
    def __init__(self, mod : torch.nn.Module):
        # Rather than have the user symbolically trace their model,
        # we're going to do it in the constructor. As a result, the
        # user can pass in any ``Module`` without having to worry about
        # symbolic tracing APIs
        gm = torch.fx.symbolic_trace(mod)
        super().__init__(gm)
        # We are going to store away two things here:
        #
        # 1. A list of total runtimes for ``mod``. In other words, we are
        #    storing away the time ``mod(...)`` took each time this
        #    interpreter is called.
        self.total_runtime_sec : List[float] = []
        # 2. A map from ``Node`` to a list of times (in seconds) that
        #    node took to run. This can be seen as similar to (1) but
        #    for specific sub-parts of the model.
        self.runtimes_sec : Dict[torch.fx.Node, List[float]] = {}
    ######################################################################
    # Next, let's override our first method: ``run()``. ``Interpreter``'s ``run``
    # method is the top-level entry point for execution of the model. We will
    # want to intercept this so that we can record the total runtime of the
    # model.
    def run(self, *args) -> Any:
        # Record the time we started running the model
        t_start = time.time()
        # Run the model by delegating back into Interpreter.run()
        return_val = super().run(*args)
        # Record the time we finished running the model
        t_end = time.time()
        # Store the total elapsed time this model execution took in the
        # ``ProfilingInterpreter``
        self.total_runtime_sec.append(t_end - t_start)
        return return_val
    ######################################################################
    # Now, let's override ``run_node``. ``Interpreter`` calls ``run_node`` each
    # time it executes a single node. We will intercept this so that we
    # can measure and record the time taken for each individual call in
    # the model.
    def run_node(self, n : torch.fx.Node) -> Any:
        # Record the time we started running the op
        t_start = time.time()
        # Run the op by delegating back into Interpreter.run_node()
        return_val = super().run_node(n)
        # Record the time we finished running the op
        t_end = time.time()
        # If we don't have an entry for this node in our runtimes_sec
        # data structure, add one with an empty list value.
        self.runtimes_sec.setdefault(n, [])
        # Record the total elapsed time for this single invocation
        # in the runtimes_sec data structure
        self.runtimes_sec[n].append(t_end - t_start)
        return return_val
    ######################################################################
    # Finally, we are going to define a method (one which doesn't override
    # any ``Interpreter`` method) that provides us a nice, organized view of
    # the data we have collected.
    def summary(self, should_sort : bool = False) -> str:
        # Build up a list of summary information for each node
        node_summaries : List[List[Any]] = []
        # Calculate the mean runtime for the whole network. Because the
        # network may have been called multiple times during profiling,
        # we need to summarize the runtimes. We choose to use the
        # arithmetic mean for this.
        mean_total_runtime = statistics.mean(self.total_runtime_sec)
        # For each node, record summary statistics
        for node, runtimes in self.runtimes_sec.items():
            # Similarly, compute the mean runtime for ``node``
            mean_runtime = statistics.mean(runtimes)
            # For easier understanding, we also compute the percentage
            # time each node took with respect to the whole network.
            pct_total = mean_runtime / mean_total_runtime * 100
            # Record the node's type, name of the node, mean runtime, and
            # percent runtime.
            node_summaries.append(
                [node.op, str(node), mean_runtime, pct_total])
        # One of the most important questions to answer when doing performance
        # profiling is "Which op(s) took the longest?". We can make this easy
        # to see by providing sorting functionality in our summary view
        if should_sort:
            node_summaries.sort(key=lambda s: s[2], reverse=True)
        # Use the ``tabulate`` library to create a well-formatted table
        # presenting our summary information
        headers : List[str] = [
            'Op type', 'Op', 'Average runtime (s)', 'Pct total runtime'
        ]
        return tabulate.tabulate(node_summaries, headers=headers)
Note
We use Python’s time.time function to pull wall clock
timestamps and compare them. This is not the most accurate
way to measure performance, and will only give us a first-
order approximation. We use this simple technique only for the
purpose of demonstration in this tutorial.
Investigating the Performance of ResNet18#
We can now use ProfilingInterpreter to inspect the performance
characteristics of our ResNet18 model;
interp = ProfilingInterpreter(rn18)
interp.run(input)
print(interp.summary(True))
Op type        Op                       Average runtime (s)    Pct total runtime
-------------  ---------------------  ---------------------  -------------------
call_module    maxpool                          0.00535941             9.6347
call_module    conv1                            0.0044179              7.94212
call_module    layer4_0_conv2                   0.00302839             5.44419
call_module    layer4_1_conv1                   0.00292683             5.2616
call_module    layer4_1_conv2                   0.00288749             5.19088
call_module    layer1_0_conv1                   0.00280762             5.0473
call_module    layer1_1_conv1                   0.00263238             4.73227
call_module    layer1_0_conv2                   0.00257039             4.62083
call_module    layer2_1_conv2                   0.00235295             4.22994
call_module    layer3_1_conv1                   0.00227332             4.08678
call_module    layer2_1_conv1                   0.00219464             3.94534
call_module    layer3_1_conv2                   0.00216675             3.8952
call_module    layer1_1_conv2                   0.00216317             3.88877
call_module    layer3_0_conv2                   0.00216269             3.88791
call_module    layer2_0_conv2                   0.00209308             3.76276
call_module    layer4_0_conv1                   0.00183034             3.29043
call_module    layer2_0_conv1                   0.00165033             2.96683
call_module    layer3_0_conv1                   0.00124645             2.24077
call_module    layer2_0_downsample_0            0.00103545             1.86145
call_module    bn1                              0.000545263            0.980228
call_module    layer3_0_downsample_0            0.000462532            0.831501
call_module    layer4_0_downsample_0            0.000445604            0.80107
call_function  add                              0.000427008            0.767638
call_function  add_1                            0.000404119            0.726492
call_module    layer1_1_bn1                     0.000278473            0.500615
call_function  add_3                            0.000262737            0.472327
call_module    relu                             0.000233889            0.420465
call_module    layer1_0_bn1                     0.00022459             0.403749
call_module    layer1_0_bn2                     0.00020051             0.36046
call_module    fc                               0.000195265            0.351031
call_module    layer2_0_bn1                     0.000177622            0.319314
call_module    layer2_0_bn2                     0.000169754            0.305169
call_module    layer2_1_bn2                     0.000165939            0.298312
call_module    layer2_0_downsample_1            0.000135899            0.244307
call_module    layer1_1_bn2                     0.000126362            0.227163
call_module    avgpool                          0.000118494            0.213019
call_module    layer3_1_bn1                     0.000112295            0.201875
call_module    layer3_1_bn2                     0.000108719            0.195446
call_module    layer4_1_bn1                     0.000106573            0.191588
call_module    layer4_1_bn2                     9.91821e-05            0.178301
call_module    layer3_0_bn2                     9.56059e-05            0.171872
call_module    layer3_0_downsample_1            9.27448e-05            0.166729
call_module    layer4_0_bn2                     9.20296e-05            0.165443
call_module    layer1_0_relu                    8.84533e-05            0.159014
call_module    layer2_1_bn1                     8.82149e-05            0.158585
call_function  add_5                            8.29697e-05            0.149156
call_module    layer1_0_relu_1                  7.98702e-05            0.143584
call_function  add_2                            7.93934e-05            0.142727
call_module    layer1_1_relu_1                  7.29561e-05            0.131154
call_module    layer4_0_downsample_1            7.15256e-05            0.128583
call_module    layer1_1_relu                    7.12872e-05            0.128154
call_module    layer4_0_bn1                     6.81877e-05            0.122582
call_module    layer3_0_bn1                     6.46114e-05            0.116153
call_function  add_7                            6.31809e-05            0.113581
call_function  add_6                            6.00815e-05            0.108009
call_module    layer4_1_relu_1                  5.91278e-05            0.106295
call_module    layer4_1_relu                    5.67436e-05            0.102009
call_module    layer4_0_relu                    4.673e-05              0.0840073
call_module    layer2_1_relu_1                  4.62532e-05            0.0831501
call_module    layer2_0_relu_1                  4.52995e-05            0.0814357
call_module    layer2_0_relu                    4.3869e-05             0.078864
call_module    layer2_1_relu                    4.31538e-05            0.0775782
call_module    layer4_0_relu_1                  4.22001e-05            0.0758638
call_function  add_4                            4.12464e-05            0.0741493
call_module    layer3_1_relu                    3.74317e-05            0.0672916
call_module    layer3_0_relu_1                  3.60012e-05            0.0647199
call_module    layer3_0_relu                    3.52859e-05            0.0634341
call_module    layer3_1_relu_1                  3.48091e-05            0.0625769
call_function  flatten                          2.47955e-05            0.0445753
placeholder    x                                2.26498e-05            0.0407178
output         output                           9.05991e-06            0.0162871
There are two things we should call out here:
MaxPool2dtakes up the most time. This is a known issue: pytorch/pytorch#51393
Conclusion#
As we can see, using FX we can easily capture PyTorch programs (even ones we don’t have the source code for!) in a machine-interpretable format and use that for analysis, such as the performance analysis we’ve done here. FX opens up an exciting world of possibilities for working with PyTorch programs.
Finally, since FX is still in beta, we would be happy to hear any feedback you have about using it. Please feel free to use the PyTorch Forums (https://discuss.pytorch.org/) and the issue tracker (pytorch/pytorch#issues) to provide any feedback you might have.
Total running time of the script: (0 minutes 0.319 seconds)