Rate this Page
torch.export AOTInductor Tutorial for Python runtime (Beta)">

torch.export AOTInductor Tutorial for Python runtime (Beta)#

Created On: Aug 23, 2024 | Last Updated: Jan 24, 2025 | Last Verified: Nov 05, 2024

Author: Ankith Gunapal, Bin Bao, Angela Yi

Warning

torch._inductor.aoti_compile_and_package and torch._inductor.aoti_load_package are in Beta status and are subject to backwards compatibility breaking changes. This tutorial provides an example of how to use these APIs for model deployment using Python runtime.

It has been shown previously how AOTInductor can be used to do Ahead-of-Time compilation of PyTorch exported models by creating an artifact that can be run in a non-Python environment. In this tutorial, you will learn an end-to-end example of how to use AOTInductor for Python runtime.

Contents

Prerequisites#

What you will learn#

Model Compilation#

We will use the TorchVision pretrained ResNet18 model as an example.

The first step is to export the model to a graph representation using torch.export.export(). To learn more about using this function, you can check out the docs or the tutorial.

Once we have exported the PyTorch model and obtained an ExportedProgram, we can apply torch._inductor.aoti_compile_and_package() to AOTInductor to compile the program to a specified device, and save the generated contents into a “.pt2” artifact.

Note

This API supports the same available options that torch.compile() has, such as mode and max_autotune (for those who want to enable CUDA graphs and leverage Triton based matrix multiplications and convolutions)

import os
import torch
import torch._inductor
from torchvision.models import ResNet18_Weights, resnet18

model = resnet18(weights=ResNet18_Weights.DEFAULT)
model.eval()

with torch.inference_mode():
    inductor_configs = {}

    if torch.cuda.is_available():
        device = "cuda"
        inductor_configs["max_autotune"] = True
    else:
        device = "cpu"

    model = model.to(device=device)
    example_inputs = (torch.randn(2, 3, 224, 224, device=device),)

    exported_program = torch.export.export(
        model,
        example_inputs,
    )
    path = torch._inductor.aoti_compile_and_package(
        exported_program,
        package_path=os.path.join(os.getcwd(), "resnet18.pt2"),
        inductor_configs=inductor_configs
    )
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth

  0%|          | 0.00/44.7M [00:00<?, ?B/s]
 80%|████████  | 35.8M/44.7M [00:00<00:00, 372MB/s]
100%|██████████| 44.7M/44.7M [00:00<00:00, 378MB/s]
/usr/local/lib/python3.10/dist-packages/torch/_inductor/compile_fx.py:282: UserWarning:

TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. Consider setting `torch.set_float32_matmul_precision('high')` for better performance.

AUTOTUNE convolution(2x3x224x224, 64x3x7x7)
strides: [150528, 1, 672, 3], [147, 1, 21, 3]
dtypes: torch.float32, torch.float32
  convolution 0.0983 ms 100.0%
  triton_convolution2d_0 0.1106 ms 88.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_4 0.1311 ms 75.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_3 0.1935 ms 50.8% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_5 0.2417 ms 40.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_2 0.2970 ms 33.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8
  triton_convolution2d_1 0.4168 ms 23.6% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
SingleProcess AUTOTUNE benchmarking takes 0.6372 seconds and 0.0004 seconds precompiling for 7 choices
AUTOTUNE convolution(2x64x56x56, 64x64x3x3)
strides: [200704, 1, 3584, 64], [576, 1, 192, 64]
dtypes: torch.float32, torch.float32
  triton_convolution2d_10 0.0410 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_11 0.0502 ms 81.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_6 0.0553 ms 74.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_9 0.0563 ms 72.7% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_7 0.0635 ms 64.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_12 0.0635 ms 64.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
  convolution 0.0932 ms 43.9%
  triton_convolution2d_8 0.1208 ms 33.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.1768 seconds and 0.0004 seconds precompiling for 8 choices
AUTOTUNE convolution(2x64x56x56, 128x64x3x3)
strides: [200704, 1, 3584, 64], [576, 1, 192, 64]
dtypes: torch.float32, torch.float32
  triton_convolution2d_38 0.0399 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_39 0.0512 ms 78.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_34 0.0553 ms 72.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_35 0.0604 ms 66.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_40 0.0635 ms 62.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_37 0.0645 ms 61.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  convolution 0.0860 ms 46.4%
  triton_convolution2d_36 0.1136 ms 35.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.1615 seconds and 0.0002 seconds precompiling for 8 choices
AUTOTUNE convolution(2x128x28x28, 128x128x3x3)
strides: [100352, 1, 3584, 128], [1152, 1, 384, 128]
dtypes: torch.float32, torch.float32
  triton_convolution2d_45 0.0491 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_46 0.0727 ms 67.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
  convolution 0.0788 ms 62.3%
  triton_convolution2d_41 0.0881 ms 55.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_42 0.1044 ms 47.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_47 0.1147 ms 42.8% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_44 0.1249 ms 39.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_43 0.2284 ms 21.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.1636 seconds and 0.0003 seconds precompiling for 8 choices
AUTOTUNE convolution(2x64x56x56, 128x64x1x1)
strides: [200704, 1, 3584, 64], [64, 1, 1, 1]
dtypes: torch.float32, torch.float32
  triton_convolution2d_52 0.0082 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
  triton_convolution2d_53 0.0092 ms 88.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
  triton_convolution2d_48 0.0113 ms 72.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
  triton_convolution2d_49 0.0123 ms 66.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
  triton_convolution2d_54 0.0133 ms 61.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
  triton_convolution2d_50 0.0205 ms 40.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=1, num_warps=8
  triton_convolution2d_51 0.0205 ms 40.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
  convolution 0.0573 ms 14.3%
SingleProcess AUTOTUNE benchmarking takes 0.1033 seconds and 0.0002 seconds precompiling for 8 choices
AUTOTUNE convolution(2x128x28x28, 256x128x3x3)
strides: [100352, 1, 3584, 128], [1152, 1, 384, 128]
dtypes: torch.float32, torch.float32
  triton_convolution2d_73 0.0502 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
  convolution 0.0778 ms 64.5%
  triton_convolution2d_70 0.1147 ms 43.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_75 0.1198 ms 41.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_72 0.1208 ms 41.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_74 0.1270 ms 39.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_69 0.1352 ms 37.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_71 0.1782 ms 28.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.1732 seconds and 0.0002 seconds precompiling for 8 choices
AUTOTUNE convolution(2x256x14x14, 256x256x3x3)
strides: [50176, 1, 3584, 256], [2304, 1, 768, 256]
dtypes: torch.float32, torch.float32
  convolution 0.0522 ms 100.0%
  triton_convolution2d_80 0.0911 ms 57.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_77 0.2017 ms 25.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_78 0.2130 ms 24.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=512, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8
  triton_convolution2d_76 0.2284 ms 22.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_82 0.2304 ms 22.7% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_79 0.2427 ms 21.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_81 0.2427 ms 21.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.2273 seconds and 0.0002 seconds precompiling for 8 choices
AUTOTUNE convolution(2x128x28x28, 256x128x1x1)
strides: [100352, 1, 3584, 128], [128, 1, 1, 1]
dtypes: torch.float32, torch.float32
  triton_convolution2d_87 0.0102 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
  triton_convolution2d_83 0.0184 ms 55.6% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
  triton_convolution2d_84 0.0184 ms 55.6% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
  triton_convolution2d_86 0.0184 ms 55.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
  triton_convolution2d_89 0.0195 ms 52.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
  convolution 0.0205 ms 50.0%
  triton_convolution2d_88 0.0205 ms 50.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
  triton_convolution2d_85 0.0256 ms 40.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.0955 seconds and 0.0002 seconds precompiling for 8 choices
AUTOTUNE convolution(2x256x14x14, 512x256x3x3)
strides: [50176, 1, 3584, 256], [2304, 1, 768, 256]
dtypes: torch.float32, torch.float32
  convolution 0.0881 ms 100.0%
  triton_convolution2d_108 0.0952 ms 92.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_106 0.2089 ms 42.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=512, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8
  triton_convolution2d_105 0.2304 ms 38.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_110 0.2304 ms 38.2% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_107 0.2345 ms 37.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_109 0.2488 ms 35.4% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_104 0.2642 ms 33.3% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
SingleProcess AUTOTUNE benchmarking takes 0.2295 seconds and 0.0002 seconds precompiling for 8 choices
AUTOTUNE convolution(2x512x7x7, 512x512x3x3)
strides: [25088, 1, 3584, 512], [4608, 1, 1536, 512]
dtypes: torch.float32, torch.float32
  convolution 0.0963 ms 100.0%
  triton_convolution2d_115 0.1792 ms 53.7% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_113 0.2150 ms 44.8% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=128, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8
  triton_convolution2d_117 0.2806 ms 34.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_112 0.3471 ms 27.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_111 0.4577 ms 21.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
  triton_convolution2d_114 0.4741 ms 20.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
  triton_convolution2d_116 0.4803 ms 20.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.2428 seconds and 0.0002 seconds precompiling for 8 choices
AUTOTUNE convolution(2x256x14x14, 512x256x1x1)
strides: [50176, 1, 3584, 256], [256, 1, 1, 1]
dtypes: torch.float32, torch.float32
  triton_convolution2d_122 0.0154 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
  triton_convolution2d_120 0.0266 ms 57.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=512, BLOCK_N=16, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=1, num_warps=8
  triton_convolution2d_119 0.0276 ms 55.6% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
  triton_convolution2d_118 0.0297 ms 51.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
  triton_convolution2d_121 0.0307 ms 50.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
  triton_convolution2d_124 0.0307 ms 50.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
  triton_convolution2d_123 0.0338 ms 45.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
  convolution 0.0758 ms 20.3%
SingleProcess AUTOTUNE benchmarking takes 0.1002 seconds and 0.0002 seconds precompiling for 8 choices
AUTOTUNE addmm(2x1000, 2x512, 512x1000)
strides: [0, 1], [512, 1], [1, 512]
dtypes: torch.float32, torch.float32, torch.float32
  addmm 0.0143 ms 100.0%
  triton_mm_142 0.0184 ms 77.8% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=32, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=2
  triton_mm_143 0.0195 ms 73.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=32, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=2
  triton_mm_140 0.0205 ms 70.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=32, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=2, num_warps=2
  triton_mm_146 0.0297 ms 48.3% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=16, BLOCK_N=64, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=3, num_warps=4
  triton_mm_141 0.0307 ms 46.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=4
  triton_mm_139 0.0317 ms 45.2% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=16, BLOCK_M=16, BLOCK_N=32, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=1, num_warps=2
  triton_mm_152 0.0358 ms 40.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=3, num_warps=4
  triton_mm_145 0.0369 ms 38.9% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=2, num_warps=4
  triton_mm_153 0.0379 ms 37.8% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=4, num_warps=4
SingleProcess AUTOTUNE benchmarking takes 0.3799 seconds and 0.0002 seconds precompiling for 18 choices

The result of aoti_compile_and_package() is an artifact “resnet18.pt2” which can be loaded and executed in Python and C++.

The artifact itself contains a bunch of AOTInductor generated code, such as a generated C++ runner file, a shared library compiled from the C++ file, and CUDA binary files, aka cubin files, if optimizing for CUDA.

Structure-wise, the artifact is a structured .zip file, with the following specification:

We can use the following command to inspect the artifact contents:

$ unzip -l resnet18.pt2
Archive:  resnet18.pt2
  Length      Date    Time    Name
---------  ---------- -----   ----
        1  01-08-2025 16:40   version
        3  01-08-2025 16:40   archive_format
    10088  01-08-2025 16:40   data/aotinductor/model/cagzt6akdaczvxwtbvqe34otfe5jlorktbqlojbzqjqvbfsjlge4.cubin
    17160  01-08-2025 16:40   data/aotinductor/model/c6oytfjmt5w4c7onvtm6fray7clirxt7q5xjbwx3hdydclmwoujz.cubin
    16616  01-08-2025 16:40   data/aotinductor/model/c7ydp7nocyz323hij4tmlf2kcedmwlyg6r57gaqzcsy3huneamu6.cubin
    17776  01-08-2025 16:40   data/aotinductor/model/cyqdf46ordevqhiddvpdpp3uzwatfbzdpl3auj2nx23uxvplnne2.cubin
    10856  01-08-2025 16:40   data/aotinductor/model/cpzfebfgrusqslui7fxsuoo4tvwulmrxirc5tmrpa4mvrbdno7kn.cubin
    14608  01-08-2025 16:40   data/aotinductor/model/c5ukeoz5wmaszd7vczdz2qhtt6n7tdbl3b6wuy4rb2se24fjwfoy.cubin
    11376  01-08-2025 16:40   data/aotinductor/model/csu3nstcp56tsjfycygaqsewpu64l5s6zavvz7537cm4s4cv2k3r.cubin
    10984  01-08-2025 16:40   data/aotinductor/model/cp76lez4glmgq7gedf2u25zvvv6rksv5lav4q22dibd2zicbgwj3.cubin
    14736  01-08-2025 16:40   data/aotinductor/model/c2bb5p6tnwz4elgujqelsrp3unvkgsyiv7xqxmpvuxcm4jfl7pc2.cubin
    11376  01-08-2025 16:40   data/aotinductor/model/c6eopmb2b4ngodwsayae4r5q6ni3jlfogfbdk3ypg56tgpzhubfy.cubin
    11624  01-08-2025 16:40   data/aotinductor/model/chmwe6lvoekzfowdbiizitm3haiiuad5kdm6sd2m6mv6dkn2zk32.cubin
    15632  01-08-2025 16:40   data/aotinductor/model/c3jop5g344hj3ztsu4qm6ibxyaaerlhkzh2e6emak23rxfje6jam.cubin
    25472  01-08-2025 16:40   data/aotinductor/model/chaiixybeiuuitm2nmqnxzijzwgnn2n7uuss4qmsupgblfh3h5hk.cubin
   139389  01-08-2025 16:40   data/aotinductor/model/cvk6qzuybruhwxtfblzxiov3rlrziv5fkqc4mdhbmantfu3lmd6t.cpp
       27  01-08-2025 16:40   data/aotinductor/model/cvk6qzuybruhwxtfblzxiov3rlrziv5fkqc4mdhbmantfu3lmd6t_metadata.json
 47195424  01-08-2025 16:40   data/aotinductor/model/cvk6qzuybruhwxtfblzxiov3rlrziv5fkqc4mdhbmantfu3lmd6t.so
---------                     -------
 47523148                     18 files

Model Inference in Python#

To load and run the artifact in Python, we can use torch._inductor.aoti_load_package().

import os
import torch
import torch._inductor

model_path = os.path.join(os.getcwd(), "resnet18.pt2")

compiled_model = torch._inductor.aoti_load_package(model_path)
example_inputs = (torch.randn(2, 3, 224, 224, device=device),)

with torch.inference_mode():
    output = compiled_model(example_inputs)

When to use AOTInductor with a Python Runtime#

There are mainly two reasons why one would use AOTInductor with a Python Runtime:

  • torch._inductor.aoti_compile_and_package generates a singular serialized artifact. This is useful for model versioning for deployments and tracking model performance over time.

  • With torch.compile() being a JIT compiler, there is a warmup cost associated with the first compilation. Your deployment needs to account for the compilation time taken for the first inference. With AOTInductor, the compilation is done ahead of time using torch.export.export and torch._inductor.aoti_compile_and_package. At deployment time, after loading the model, running inference does not have any additional cost.

The section below shows the speedup achieved with AOTInductor for first inference

We define a utility function timed to measure the time taken for inference

import time
def timed(fn):
    # Returns the result of running `fn()` and the time it took for `fn()` to run,
    # in seconds. We use CUDA events and synchronization for accurate
    # measurement on CUDA enabled devices.
    if torch.cuda.is_available():
        start = torch.cuda.Event(enable_timing=True)
        end = torch.cuda.Event(enable_timing=True)
        start.record()
    else:
        start = time.time()

    result = fn()
    if torch.cuda.is_available():
        end.record()
        torch.cuda.synchronize()
    else:
        end = time.time()

    # Measure time taken to execute the function in miliseconds
    if torch.cuda.is_available():
        duration = start.elapsed_time(end)
    else:
        duration = (end - start) * 1000

    return result, duration

Lets measure the time for first inference using AOTInductor

torch._dynamo.reset()

model = torch._inductor.aoti_load_package(model_path)
example_inputs = (torch.randn(1, 3, 224, 224, device=device),)

with torch.inference_mode():
    _, time_taken = timed(lambda: model(example_inputs))
    print(f"Time taken for first inference for AOTInductor is {time_taken:.2f} ms")
Time taken for first inference for AOTInductor is 3.41 ms

Lets measure the time for first inference using torch.compile

torch._dynamo.reset()

model = resnet18(weights=ResNet18_Weights.DEFAULT).to(device)
model.eval()

model = torch.compile(model)
example_inputs = torch.randn(1, 3, 224, 224, device=device)

with torch.inference_mode():
    _, time_taken = timed(lambda: model(example_inputs))
    print(f"Time taken for first inference for torch.compile is {time_taken:.2f} ms")
Time taken for first inference for torch.compile is 3600.11 ms

We see that there is a drastic speedup in first inference time using AOTInductor compared to torch.compile

Conclusion#

In this recipe, we have learned how to effectively use the AOTInductor for Python runtime by compiling and loading a pretrained ResNet18 model. This process demonstrates the practical application of generating a compiled artifact and running it within a Python environment. We also looked at the advantage of using AOTInductor in model deployments, with regards to speed up in first inference time.

Total running time of the script: (0 minutes 27.156 seconds)