torchrl.modules.mcts.PUCTScore¶
- class torchrl.modules.mcts.PUCTScore(*args, **kwargs)[source]¶
Computes the PUCT (Polynomial Upper Confidence Trees) score for MCTS.
PUCT is a widely used score in MCTS algorithms, notably in AlphaGo and AlphaZero, to balance exploration and exploitation. It incorporates prior probabilities from a policy network, encouraging exploration of actions deemed promising by the policy, while also considering visit counts and accumulated rewards.
The formula used is: score = (win_count / visits) + c * prior_prob * sqrt(total_visits) / (1 + visits)
Where: - win_count: Sum of rewards (or win counts) for the action. - visits: Visit count for the action. - total_visits: Visit count of the parent node (N). - prior_prob: Prior probability of selecting the action (e.g., from a policy network). - c: The exploration constant, controlling the trade-off between exploitation
(first term) and exploration (second term).
- Parameters:
c (float) – The exploration constant.
win_count_key (NestedKey, optional) – Key for the tensor in the input TensorDictBase containing the sum of rewards (or win counts) for each action. Defaults to “win_count”.
visits_key (NestedKey, optional) – Key for the tensor containing the visit count for each action. Defaults to “visits”.
total_visits_key (NestedKey, optional) – Key for the tensor (or scalar) representing the visit count of the parent node (N). Defaults to “total_visits”.
prior_prob_key (NestedKey, optional) – Key for the tensor containing the prior probabilities for each action. Defaults to “prior_prob”.
score_key (NestedKey, optional) – Key where the calculated PUCT scores will be stored in the output TensorDictBase. Defaults to “score”.
- Input Keys:
win_count_key (torch.Tensor): Tensor of shape (…, num_actions) or matching visits_key.
visits_key (torch.Tensor): Tensor of shape (…, num_actions). If an action has zero visits, its exploitation term (win_count / visits) will result in NaN if win_count is also zero, or +/-inf if win_count is non-zero. The exploration term will still be valid due to (1 + visits).
total_visits_key (torch.Tensor): Scalar or tensor broadcastable to other inputs, representing the parent node’s visit count.
prior_prob_key (torch.Tensor): Tensor of shape (…, num_actions) containing prior probabilities.
- Output Keys:
score_key (torch.Tensor): Tensor of the same shape as visits_key, containing the calculated PUCT scores.
Example
```python from tensordict import TensorDict from torchrl.modules.mcts.scores import PUCTScore
# Create a PUCTScore instance puct = PUCTScore(c=1.5)
# Define a TensorDict with required keys node = TensorDict(
- {
“win_count”: torch.tensor([10.0, 20.0]), “visits”: torch.tensor([5.0, 10.0]), “total_visits”: torch.tensor(50.0), “prior_prob”: torch.tensor([0.6, 0.4]),
}, batch_size=[],
)
# Compute the PUCT scores result = puct(node) print(result[“score”]) # Output: Tensor with PUCT scores ```
- __init__(*, c: float, win_count_key: NestedKey = 'win_count', visits_key: NestedKey = 'visits', total_visits_key: NestedKey = 'total_visits', prior_prob_key: NestedKey = 'prior_prob', score_key: NestedKey = 'score')[source]¶
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(*, c[, win_count_key, visits_key, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(node)Define the computation performed at every call.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
is_tdmodule_compatible(module)Checks if a module is compatible with TensorDictModule API.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
reset_out_keys()Resets the
out_keysattribute to its orignal value.reset_parameters_recursive([parameters])Recursively reset the parameters of the module and its children.
select_out_keys(*out_keys)Selects the keys that will be found in the output tensordict.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module[, strict])Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchesin_keysout_keysout_keys_sourcectraining