VIPTransform¶
- class torchrl.envs.transforms.VIPTransform(*args, **kwargs)[source]¶
- VIP Transform class. - VIP provides pre-trained ResNet weights aimed at facilitating visual embedding and reward for robotic tasks. The models are trained using Ego4d. See the paper: - VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training (Jason Ma
- Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar*, Amy Zhang*) 
 - Parameters:
- model_name (str) – one of resnet50 
- in_keys (list of str, optional) – list of input keys. If left empty, the “pixels” key is assumed. 
- out_keys (list of str, optional) – list of output keys. If left empty, “vip_vec” is assumed. 
- size (int, optional) – Size of the image to feed to resnet. Defaults to 244. 
- stack_images (bool, optional) – if False, the images given in the - in_keysargument will be treaded separately and each will be given a single, separated entry in the output tensordict. Defaults to- True.
- download (bool, torchvision Weights config or corresponding string) – if - True, the weights will be downloaded using the torch.hub download API (i.e. weights will be cached for future use). These weights are the original weights from the VIP publication. If the torchvision weights are needed, there are two ways they can be obtained:- download=ResNet50_Weights.IMAGENET1K_V1or- download="IMAGENET1K_V1"where- ResNet50_Weightscan be imported via- from torchvision.models import resnet50, ResNet50_Weights. Defaults to False.
- download_path (str, optional) – path where to download the models. Default is None (cache path determined by torch.hub utils). 
- tensor_pixels_keys (list of str, optional) – Optionally, one can keep the original images (as collected from the env) in the output tensordict. If no value is provided, this won’t be collected. 
 
 - to(dest: DEVICE_TYPING | torch.dtype)[source]¶
- Move and/or cast the parameters and buffers. - This can be called as - to(device=None, dtype=None, non_blocking=False)[source]
 - to(dtype, non_blocking=False)[source]
 - to(tensor, non_blocking=False)[source]
 - to(memory_format=torch.channels_last)[source]
 - Its signature is similar to - torch.Tensor.to(), but only accepts floating point or complex- dtypes. In addition, this method will only cast the floating point or complex parameters and buffers to- dtype(if given). The integral parameters and buffers will be moved- device, if that is given, but with dtypes unchanged. When- non_blockingis set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.- See below for examples. - Note - This method modifies the module in-place. - Parameters:
- device ( - torch.device) – the desired device of the parameters and buffers in this module
- dtype ( - torch.dtype) – the desired floating point or complex dtype of the parameters and buffers in this module
- tensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module 
- memory_format ( - torch.memory_format) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
 
- Returns:
- self 
- Return type:
- Module 
 - Examples: - >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)