Note
Go to the end to download the full example code
Compiling Stable Diffusion model using the torch.compile backend¶
This interactive script is intended as a sample of the Torch-TensorRT workflow with torch.compile on a Stable Diffusion model. A sample output is featured below:
Imports and Model Definition¶
import torch
import torch_tensorrt
from diffusers import DiffusionPipeline
model_id = "CompVis/stable-diffusion-v1-4"
device = "cuda:0"
# Instantiate Stable Diffusion Pipeline with FP16 weights
pipe = DiffusionPipeline.from_pretrained(
    model_id, revision="fp16", torch_dtype=torch.float16
)
pipe = pipe.to(device)
backend = "torch_tensorrt"
# Optimize the UNet portion with Torch-TensorRT
pipe.unet = torch.compile(
    pipe.unet,
    backend=backend,
    options={
        "truncate_long_and_double": True,
        "enabled_precisions": {torch.float32, torch.float16},
    },
    dynamic=False,
)
Inference¶
with torch.no_grad():
    prompt = "a majestic castle in the clouds"
    image = pipe(prompt).images[0]
    image.save("images/majestic_castle.png")
    image.show()
Total running time of the script: ( 0 minutes 0.000 seconds)