Torch-TensorRT in JetPack¶
Overview¶
JetPack 6.2¶
NVIDIA JetPack 6.2 is the latest production release for Jetson platforms, featuring: - CUDA 12.6 - TensorRT 10.3 - cuDNN 9.3
For detailed information about JetPack 6.2, refer to: * JetPack 6.2 Release Notes * PyTorch for Jetson Platform
Prerequisites¶
System Preparation¶
Flash your Jetson device
with JetPack 6.2 using SDK Manager: - SDK Manager Guide
Verify JetPack installation:
apt show nvidia-jetpack
Install development components: .. code-block:: sh
sudo apt-get update sudo apt-get install nvidia-jetpack
Confirm CUDA 12.6 installation:
nvcc --version # If missing or incorrect version: sudo apt-get install cuda-toolkit-12-6
Validate cuSPARSELt library:
# Check library presence ls /usr/local/cuda/lib64/libcusparseLt.so # Install if missing wget https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-sbsa/libcusparse_lt-linux-sbsa-0.5.2.1-archive.tar.xz tar xf libcusparse_lt-linux-sbsa-0.5.2.1-archive.tar.xz sudo cp -a libcusparse_lt-linux-sbsa-0.5.2.1-archive/include/* /usr/local/cuda/include/ sudo cp -a libcusparse_lt-linux-sbsa-0.5.2.1-archive/lib/* /usr/local/cuda/lib64/
Building Torch-TensorRT¶
Build Environment Setup¶
Install Build Dependencies:
wget https://github.com/bazelbuild/bazelisk/releases/download/v1.26.0/bazelisk-linux-arm64 sudo mv bazelisk-linux-arm64 /usr/bin/bazel sudo chmod +x /usr/bin/bazel
apt-get install ninja-build vim libopenblas-dev git
Install Python dependencies:
wget https://bootstrap.pypa.io/get-pip.py python get-pip.py python -m pip install pyyaml
Install PyTorch:
# Can only install the torch and torchvision wheel from the JPL repo which is built specifically for JetPack 6.2 python -m pip install torch==2.7.0 torchvision==0.22.0 --index-url=https://pypi.jetson-ai-lab.dev/jp6/cu126/
Building the Wheel¶
Installation¶
Post-Installation Verification¶
Verify installation by importing in Python: .. code-block:: python
# verify whether the torch-tensorrt can be imported import torch import torch_tensorrt print(torch_tensorrt.__version__)
# verify whether the examples can be run python examples/dynamo/torch_compile_resnet_example.py