regnet_y_32gf¶
- torchvision.models.regnet_y_32gf(*, weights: Optional[RegNet_Y_32GF_Weights] = None, progress: bool = True, **kwargs: Any) RegNet[source]¶
- Constructs a RegNetY_32GF architecture from Designing Network Design Spaces. - Parameters:
- weights ( - RegNet_Y_32GF_Weights, optional) – The pretrained weights to use. See- RegNet_Y_32GF_Weightsbelow for more details and possible values. By default, no pretrained weights are used.
- progress (bool, optional) – If True, displays a progress bar of the download to stderr. Default is True. 
- **kwargs – parameters passed to either - torchvision.models.regnet.RegNetor- torchvision.models.regnet.BlockParamsclass. Please refer to the source code for more detail about the classes.
 
 - class torchvision.models.RegNet_Y_32GF_Weights(value)[source]¶
- The model builder above accepts the following values as the - weightsparameter.- RegNet_Y_32GF_Weights.DEFAULTis equivalent to- RegNet_Y_32GF_Weights.IMAGENET1K_V2. You can also use strings, e.g.- weights='DEFAULT'or- weights='IMAGENET1K_V1'.- RegNet_Y_32GF_Weights.IMAGENET1K_V1: - These weights reproduce closely the results of the paper using a simple training recipe. - acc@1 (on ImageNet-1K) - 80.878 - acc@5 (on ImageNet-1K) - 95.34 - min_size - height=1, width=1 - categories - tench, goldfish, great white shark, … (997 omitted) - num_params - 145046770 - recipe - GFLOPS - 32.28 - File size - 554.1 MB - The inference transforms are available at - RegNet_Y_32GF_Weights.IMAGENET1K_V1.transformsand perform the following preprocessing operations: Accepts- PIL.Image, batched- (B, C, H, W)and single- (C, H, W)image- torch.Tensorobjects. The images are resized to- resize_size=[256]using- interpolation=InterpolationMode.BILINEAR, followed by a central crop of- crop_size=[224]. Finally the values are first rescaled to- [0.0, 1.0]and then normalized using- mean=[0.485, 0.456, 0.406]and- std=[0.229, 0.224, 0.225].- RegNet_Y_32GF_Weights.IMAGENET1K_V2: - These weights improve upon the results of the original paper by using a modified version of TorchVision’s new training recipe. Also available as - RegNet_Y_32GF_Weights.DEFAULT.- acc@1 (on ImageNet-1K) - 83.368 - acc@5 (on ImageNet-1K) - 96.498 - min_size - height=1, width=1 - categories - tench, goldfish, great white shark, … (997 omitted) - num_params - 145046770 - recipe - GFLOPS - 32.28 - File size - 554.1 MB - The inference transforms are available at - RegNet_Y_32GF_Weights.IMAGENET1K_V2.transformsand perform the following preprocessing operations: Accepts- PIL.Image, batched- (B, C, H, W)and single- (C, H, W)image- torch.Tensorobjects. The images are resized to- resize_size=[232]using- interpolation=InterpolationMode.BILINEAR, followed by a central crop of- crop_size=[224]. Finally the values are first rescaled to- [0.0, 1.0]and then normalized using- mean=[0.485, 0.456, 0.406]and- std=[0.229, 0.224, 0.225].- RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_E2E_V1: - These weights are learnt via transfer learning by end-to-end fine-tuning the original SWAG weights on ImageNet-1K data. - acc@1 (on ImageNet-1K) - 86.838 - acc@5 (on ImageNet-1K) - 98.362 - min_size - height=1, width=1 - categories - tench, goldfish, great white shark, … (997 omitted) - recipe - license - num_params - 145046770 - GFLOPS - 94.83 - File size - 554.1 MB - The inference transforms are available at - RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_E2E_V1.transformsand perform the following preprocessing operations: Accepts- PIL.Image, batched- (B, C, H, W)and single- (C, H, W)image- torch.Tensorobjects. The images are resized to- resize_size=[384]using- interpolation=InterpolationMode.BICUBIC, followed by a central crop of- crop_size=[384]. Finally the values are first rescaled to- [0.0, 1.0]and then normalized using- mean=[0.485, 0.456, 0.406]and- std=[0.229, 0.224, 0.225].- RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_LINEAR_V1: - These weights are composed of the original frozen SWAG trunk weights and a linear classifier learnt on top of them trained on ImageNet-1K data. - acc@1 (on ImageNet-1K) - 84.622 - acc@5 (on ImageNet-1K) - 97.48 - min_size - height=1, width=1 - categories - tench, goldfish, great white shark, … (997 omitted) - recipe - license - num_params - 145046770 - GFLOPS - 32.28 - File size - 554.1 MB - The inference transforms are available at - RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_LINEAR_V1.transformsand perform the following preprocessing operations: Accepts- PIL.Image, batched- (B, C, H, W)and single- (C, H, W)image- torch.Tensorobjects. The images are resized to- resize_size=[224]using- interpolation=InterpolationMode.BICUBIC, followed by a central crop of- crop_size=[224]. Finally the values are first rescaled to- [0.0, 1.0]and then normalized using- mean=[0.485, 0.456, 0.406]and- std=[0.229, 0.224, 0.225].