Rate this Page

Custom SYCL Operators#

What you will learn
  • How to integrate custom operators written in SYCL with PyTorch

Prerequisites
  • PyTorch 2.8 or later

  • Basic understanding of SYCL programming

Note

SYCL serves as the backend programming language for Intel GPUs (device label xpu). For configuration details, see: Getting Started on Intel GPUs. The Intel Compiler, which comes bundled with Intel Deep Learning Essentials, handles SYCL compilation. Ensure you install and activate the compiler environment prior to executing the code examples in this tutorial.

PyTorch offers a large library of operators that work on Tensors (e.g. torch.add, torch.sum, etc). However, you may wish to bring a new custom operator to PyTorch. This tutorial demonstrates the best path to authoring a custom operator written in SYCL. Tutorials for C++ and CUDA operators are available in the Custom C++ and CUDA Operators.

Follow the structure to create a custom SYCL operator:

sycl_example/
├── setup.py
├── sycl_extension
│   ├── __init__.py
│   ├── muladd.sycl
│   └── ops.py
└── test_sycl_extension.py

Setting up the Build System#

If you need to compile SYCL code (for example, .sycl files), use torch.utils.cpp_extension.SyclExtension. The setup process is very similar to C++/CUDA, except the compilation arguments need to be adjusted for SYCL.

Using sycl_extension is as straightforward as writing the following setup.py:

import os
import torch
import glob
from setuptools import find_packages, setup
from torch.utils.cpp_extension import SyclExtension, BuildExtension

library_name = "sycl_extension"
py_limited_api = True
extra_compile_args = {
    "cxx": ["-O3",
            "-fdiagnostics-color=always",
            "-DPy_LIMITED_API=0x03090000"],
    "sycl": ["-O3" ]
}

assert(torch.xpu.is_available()), "XPU is not available, please check your environment"
# Source files collection
this_dir = os.path.dirname(os.path.curdir)
extensions_dir = os.path.join(this_dir, library_name)
sources = list(glob.glob(os.path.join(extensions_dir, "*.sycl")))
# Construct extension
ext_modules = [
    SyclExtension(
        f"{library_name}._C",
        sources,
        extra_compile_args=extra_compile_args,
        py_limited_api=py_limited_api,
    )
]
setup(
    name=library_name,
    packages=find_packages(),
    ext_modules=ext_modules,
    install_requires=["torch"],
    description="Simple Example of PyTorch Sycl extensions",
    cmdclass={"build_ext": BuildExtension},
    options={"bdist_wheel": {"py_limited_api": "cp39"}} if py_limited_api else {},
)

Defining the custom op and adding backend implementations#

First, let’s write a SYCL function that computes mymuladd:

In order to use this from PyTorch’s Python frontend, we need to register it as a PyTorch operator using the TORCH_LIBRARY API. This will automatically bind the operator to Python.

If you also have a SYCL implementation of myaddmul, you can also register it in a separate TORCH_LIBRARY_IMPL block:

#include <c10/xpu/XPUStream.h>
#include <sycl/sycl.hpp>
#include <ATen/Operators.h>
#include <torch/all.h>
#include <torch/library.h>

namespace sycl_extension {
// MulAdd Kernel: result = a * b + c
static void muladd_kernel(
    int numel, const float* a, const float* b, float c, float* result,
    const sycl::nd_item<1>& item) {
    int idx = item.get_global_id(0);
    if (idx < numel) {
        result[idx] = a[idx] * b[idx] + c;
    }
}

class MulAddKernelFunctor {
public:
    MulAddKernelFunctor(int _numel, const float* _a, const float* _b, float _c, float* _result)
        : numel(_numel), a(_a), b(_b), c(_c), result(_result) {}
    void operator()(const sycl::nd_item<1>& item) const {
        muladd_kernel(numel, a, b, c, result, item);
    }

private:
    int numel;
    const float* a;
    const float* b;
    float c;
    float* result;
};

at::Tensor mymuladd_xpu(const at::Tensor& a, const at::Tensor& b, double c) {
    TORCH_CHECK(a.sizes() == b.sizes(), "a and b must have the same shape");
    TORCH_CHECK(a.dtype() == at::kFloat, "a must be a float tensor");
    TORCH_CHECK(b.dtype() == at::kFloat, "b must be a float tensor");
    TORCH_CHECK(a.device().is_xpu(), "a must be an XPU tensor");
    TORCH_CHECK(b.device().is_xpu(), "b must be an XPU tensor");

    at::Tensor a_contig = a.contiguous();
    at::Tensor b_contig = b.contiguous();
    at::Tensor result = at::empty_like(a_contig);

    const float* a_ptr = a_contig.data_ptr<float>();
    const float* b_ptr = b_contig.data_ptr<float>();
    float* res_ptr = result.data_ptr<float>();
    int numel = a_contig.numel();

    sycl::queue& queue = c10::xpu::getCurrentXPUStream().queue();
    constexpr int threads = 256;
    int blocks = (numel + threads - 1) / threads;

    queue.submit([&](sycl::handler& cgh) {
        cgh.parallel_for<MulAddKernelFunctor>(
            sycl::nd_range<1>(blocks * threads, threads),
            MulAddKernelFunctor(numel, a_ptr, b_ptr, static_cast<float>(c), res_ptr)
        );
    });

    return result;
}
// Defines the operators
TORCH_LIBRARY(sycl_extension, m) {
  m.def("mymuladd(Tensor a, Tensor b, float c) -> Tensor");
}

// ==================================================
// Register SYCL Implementations to Torch Library
// ==================================================
TORCH_LIBRARY_IMPL(sycl_extension, XPU, m) {
    m.impl("mymuladd", &mymuladd_xpu);
}

} // namespace sycl_extension

Create a Python Interface#

Create a Python interface for our operator in the sycl_extension/ops.py file:

import torch
from torch import Tensor
__all__ = ["mymuladd"]

def mymuladd(a: Tensor, b: Tensor, c: float) -> Tensor:
    """Performs a * b + c in an efficient fused kernel"""
    return torch.ops.sycl_extension.mymuladd.default(a, b, c)

Initialize Package#

Create sycl_extension/__init__.py file to make the package importable:

import ctypes
from pathlib import Path

import torch

current_dir = Path(__file__).parent.parent
build_dir = current_dir / "build"
so_files = list(build_dir.glob("**/*.so"))

assert len(so_files) == 1, f"Expected one _C*.so file, found {len(so_files)}"

with torch._ops.dl_open_guard():
    loaded_lib = ctypes.CDLL(so_files[0])

from . import ops

__all__ = [
    "loaded_lib",
    "ops",
]

Testing SYCL extension operator#

Use simple test to verify that the operator works correctly.

import torch
from torch.testing._internal.common_utils import TestCase
import unittest
import sycl_extension

def reference_muladd(a, b, c):
    return a * b + c

class TestMyMulAdd(TestCase):
    def sample_inputs(self, device, *, requires_grad=False):
        def make_tensor(*size):
            return torch.randn(size, device=device, requires_grad=requires_grad)

        def make_nondiff_tensor(*size):
            return torch.randn(size, device=device, requires_grad=False)

        return [
            [make_tensor(3), make_tensor(3), 1],
            [make_tensor(20), make_tensor(20), 3.14],
            [make_tensor(20), make_nondiff_tensor(20), -123],
            [make_nondiff_tensor(2, 3), make_tensor(2, 3), -0.3],
        ]

    def _test_correctness(self, device):
        samples = self.sample_inputs(device)
        for args in samples:
            result = sycl_extension.ops.mymuladd(*args)
            expected = reference_muladd(*args)
            torch.testing.assert_close(result, expected)

    @unittest.skipIf(not torch.xpu.is_available(), "requires Intel GPU")
    def test_correctness_xpu(self):
        self._test_correctness("xpu")

if __name__ == "__main__":
    unittest.main()

This test checks the correctness of the custom operator by comparing its output against a reference implementation.

Conclusion#

In this tutorial, we demonstrated how to implement and compile custom SYCL operators for PyTorch. We specifically showcased an inference operation muladd. For adding backward support or enabling torch.compile compatibility, please refer to Custom C++ and CUDA Operators.