Shortcuts

torchrl.trainers.algorithms.configs.trainers.PPOTrainerConfig

class torchrl.trainers.algorithms.configs.trainers.PPOTrainerConfig(collector: Any, total_frames: int, optim_steps_per_batch: int | None, loss_module: Any, optimizer: Any, logger: Any, save_trainer_file: Any, replay_buffer: Any, frame_skip: int = 1, clip_grad_norm: bool = True, clip_norm: float | None = None, progress_bar: bool = True, seed: int | None = None, save_trainer_interval: int = 10000, log_interval: int = 10000, create_env_fn: Any = None, actor_network: Any = None, critic_network: Any = None, num_epochs: int = 4, _target_: str = 'torchrl.trainers.algorithms.configs.trainers._make_ppo_trainer')[source]

Configuration class for PPO (Proximal Policy Optimization) trainer.

This class defines the configuration parameters for creating a PPO trainer, including both required and optional fields with sensible defaults.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources