SafeModule¶
- class torchrl.modules.tensordict_module.SafeModule(*args, **kwargs)[source]¶
tensordict.nn.TensorDictModulesubclass that accepts aTensorSpecas argument to control the output domain.- Parameters:
module (nn.Module) – a nn.Module used to map the input to the output parameter space. Can be a functional module (FunctionalModule or FunctionalModuleWithBuffers), in which case the
forwardmethod will expect the params (and possibly) buffers keyword arguments.in_keys (iterable of str) – keys to be read from input tensordict and passed to the module. If it contains more than one element, the values will be passed in the order given by the in_keys iterable.
out_keys (iterable of str) – keys to be written to the input tensordict. The length of out_keys must match the number of tensors returned by the embedded module. Using “_” as a key avoid writing tensor to output.
spec (TensorSpec, optional) – specs of the output tensor. If the module outputs multiple output tensors, spec characterize the space of the first output tensor.
safe (bool) – if
True, the value of the output is checked against the input spec. Out-of-domain sampling can occur because of exploration policies or numerical under/overflow issues. If this value is out of bounds, it is projected back onto the desired space using theTensorSpec.projectmethod. Default isFalse.inplace (bool or str, optional) – if True, the input tensordict is modified in-place. If False, a new empty
TensorDictinstance is created. If “empty”, input.empty() is used instead (ie, the output preserves type, device and batch-size). Defaults to True.
- Embedding a neural network in a TensorDictModule only requires to specify the input and output keys. The domain spec can
be passed along if needed. TensorDictModule support functional and regular
nn.Moduleobjects. In the functional case, the ‘params’ (and ‘buffers’) keyword argument must be specified:
Examples
>>> import torch >>> from tensordict import TensorDict >>> from torchrl.data import Unbounded >>> from torchrl.modules import TensorDictModule >>> td = TensorDict({"input": torch.randn(3, 4), "hidden": torch.randn(3, 8)}, [3,]) >>> spec = Unbounded(8) >>> module = torch.nn.GRUCell(4, 8) >>> td_fmodule = TensorDictModule( ... module=module, ... spec=spec, ... in_keys=["input", "hidden"], ... out_keys=["output"], ... ) >>> params = TensorDict.from_module(td_fmodule) >>> with params.to_module(td_module): ... td_functional = td_fmodule(td.clone()) >>> print(td_functional) TensorDict( fields={ hidden: Tensor(torch.Size([3, 8]), dtype=torch.float32), input: Tensor(torch.Size([3, 4]), dtype=torch.float32), output: Tensor(torch.Size([3, 8]), dtype=torch.float32)}, batch_size=torch.Size([3]), device=None, is_shared=False)
- In the stateful case:
>>> td_module = TensorDictModule( ... module=torch.nn.GRUCell(4, 8), ... spec=spec, ... in_keys=["input", "hidden"], ... out_keys=["output"], ... ) >>> td_stateful = td_module(td.clone()) >>> print(td_stateful) TensorDict( fields={ hidden: Tensor(torch.Size([3, 8]), dtype=torch.float32), input: Tensor(torch.Size([3, 4]), dtype=torch.float32), output: Tensor(torch.Size([3, 8]), dtype=torch.float32)}, batch_size=torch.Size([3]), device=None, is_shared=False)
One can use a vmap operator to call the functional module. In this case the tensordict is expanded to match the batch size (i.e. the tensordict isn’t modified in-place anymore):
>>> # Model ensemble using vmap >>> from torch import vmap >>> params_repeat = params.expand(4, *params.shape) >>> td_vmap = vmap(td_fmodule, (None, 0))(td.clone(), params_repeat) >>> print(td_vmap) TensorDict( fields={ hidden: Tensor(torch.Size([4, 3, 8]), dtype=torch.float32), input: Tensor(torch.Size([4, 3, 4]), dtype=torch.float32), output: Tensor(torch.Size([4, 3, 8]), dtype=torch.float32)}, batch_size=torch.Size([4, 3]), device=None, is_shared=False)
- random(tensordict: TensorDictBase) TensorDictBase[source]¶
Samples a random element in the target space, irrespective of any input.
If multiple output keys are present, only the first will be written in the input
tensordict.- Parameters:
tensordict (TensorDictBase) – tensordict where the output value should be written.
- Returns:
the original tensordict with a new/updated value for the output key.
- to(dest: Union[dtype, device, str, int]) TensorDictModule[source]¶
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)[source]
- to(dtype, non_blocking=False)[source]
- to(tensor, non_blocking=False)[source]
- to(memory_format=torch.channels_last)[source]
Its signature is similar to
torch.Tensor.to(), but only accepts floating point or complexdtypes. In addition, this method will only cast the floating point or complex parameters and buffers todtype(if given). The integral parameters and buffers will be moveddevice, if that is given, but with dtypes unchanged. Whennon_blockingis set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)