LLMWrapperBase¶
- class torchrl.modules.llm.LLMWrapperBase(*args, **kwargs)[source]¶
- A LLM wrapper base class. - This class provides a consistent interface for LLM wrappers with the following features: - Support for different input modalities (history, text, tokens) - Consistent output structure using TensorClass objects (Text, Tokens, Masks, LogProbs) - Configurable generation and log-probability computation - Standardized generation parameters across different backends - Parameters:
- model – The underlying model to wrap. 
- Keyword Arguments:
- tokenizer – The tokenizer to use for encoding and decoding text. 
- input_mode – The input modality to use. Must be one of “history”, “text”, or “tokens”. 
- input_key – The key for the input data. If None, defaults to the input_mode name. 
- attention_mask_key – The key for attention masks (used in “tokens” mode). 
- generate – Whether to enable text generation. 
- generate_kwargs – - Additional arguments to pass to the model’s generate method. - Common Parameters (cross-backend compatible): - max_new_tokens (int): Maximum number of new tokens to generate 
- num_return_sequences (int): Number of sequences to return 
- temperature (float): Sampling temperature (0.0 = deterministic, higher = more random) 
- top_p (float): Nucleus sampling parameter (0.0-1.0) 
- top_k (int): Top-k sampling parameter 
- repetition_penalty (float): Penalty for repeating tokens 
- do_sample (bool): Whether to use sampling vs greedy decoding 
- num_beams (int): Number of beams for beam search 
- length_penalty (float): Penalty for sequence length 
- early_stopping (bool): Whether to stop early in beam search 
- stop_sequences (list): Sequences that stop generation 
- skip_special_tokens (bool): Whether to skip special tokens in output 
- logprobs (bool): Whether to return log probabilities 
 - Parameter Conflict Resolution: - When both legacy (backend-specific) and standardized parameter names are provided, the legacy names silently prevail. This ensures backward compatibility with existing code. - If both - max_tokensand- max_new_tokensare passed,- max_tokenswins
- If both - nand- num_return_sequencesare passed,- nwins
 - This behavior allows existing code to continue working without modification. - Parameter Validation: - The following validations are performed: - Temperature must be non-negative 
- top_p must be between 0 and 1 
- top_k must be positive 
- repetition_penalty must be positive 
- When do_sample=False, temperature must be 0 for greedy decoding 
 
- tokenizer_kwargs – Additional arguments to pass to the tokenizer. 
- pad_output – Whether to pad the output sequences to a uniform length. 
- pad_model_input – Whether to pad the model input sequences to a uniform length. May not be supported by all models. 
- inplace – Determines how the module should handle in-place operations. 
- device – The device to use for computation. 
- layout – The layout to use for the output tensors when pad_output=False. 
- num_samples – The number of samples to generate. 
- log_probs_key (NestedKey | None, optional) – The key for the log probabilities - LogProbsobject. Defaults to “log_probs”.
- text_key (NestedKey | None, optional) – The key for the action - Textobject. Defaults to “text”.
- tokens_key (NestedKey | None, optional) – The key for the action - Tokensobject. Defaults to “tokens”.
- masks_key (NestedKey | None, optional) – The key for the action - Masksobject. Defaults to “masks”.
- batching (bool | None, optional) – Whether to enable batching. See ref_batching below for more details. 
- min_batch_size (int | None, optional) – The minimum batch size to use for batching. See ref_batching below for more details. 
- max_batch_size (int | None, optional) – The maximum batch size to use for batching. See ref_batching below for more details. 
- batching_timeout (float, optional) – The timeout for batching. See ref_batching below for more details. 
 
 - Variables:
- collector – The collector associated with the module, if it exists. 
 - See also - TransformersWrapper(see ref_transformers_wrapper)
- vLLMWrapper(see ref_vllm_wrapper)
 - add_module(name: str, module: Optional[Module]) None¶
- Add a child module to the current module. - The module can be accessed as an attribute using the given name. - Parameters:
- name (str) – name of the child module. The child module can be accessed from this module using the given name 
- module (Module) – child module to be added to the module. 
 
 
 - apply(fn: Callable[[Module], None]) Self¶
- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- Typical use includes initializing the parameters of a model (see also torch.nn.init). - Parameters:
- fn ( - Module-> None) – function to be applied to each submodule
- Returns:
- self 
- Return type:
- Module 
 - Example: - >>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 
 - property batching: bool¶
- Whether batching is enabled. 
 - bfloat16() Self¶
- Casts all floating point parameters and buffers to - bfloat16datatype.- Note - This method modifies the module in-place. - Returns:
- self 
- Return type:
- Module 
 
 - buffers(recurse: bool = True) Iterator[Tensor]¶
- Return an iterator over module buffers. - Parameters:
- recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. 
- Yields:
- torch.Tensor – module buffer 
 - Example: - >>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L) 
 - children() Iterator[Module]¶
- Return an iterator over immediate children modules. - Yields:
- Module – a child module 
 
 - cleanup_batching(*, flush: bool = False) None[source]¶
- Reset the internal batching state. - Parameters:
- flush (bool, default False) – - False → cancel / fail every still-pending Future. 
- True → try to run one last forward pass with whatever is left in 
 - _batch_queue, so callers receive real results instead of an exception. 
 
 - property collector: LLMCollector | None¶
- Returns the collector associated with the module, if it exists. 
 - compile(*args, **kwargs)¶
- Compile this Module’s forward using - torch.compile().- This Module’s __call__ method is compiled and all arguments are passed as-is to - torch.compile().- See - torch.compile()for details on the arguments for this function.
 - cpu() Self¶
- Move all model parameters and buffers to the CPU. - Note - This method modifies the module in-place. - Returns:
- self 
- Return type:
- Module 
 
 - cuda(device: Optional[Union[device, int]] = None) Self¶
- Move all model parameters and buffers to the GPU. - This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized. - Note - This method modifies the module in-place. - Parameters:
- device (int, optional) – if specified, all parameters will be copied to that device 
- Returns:
- self 
- Return type:
- Module 
 
 - double() Self¶
- Casts all floating point parameters and buffers to - doubledatatype.- Note - This method modifies the module in-place. - Returns:
- self 
- Return type:
- Module 
 
 - eval() Self¶
- Set the module in evaluation mode. - This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. - Dropout,- BatchNorm, etc.- This is equivalent with - self.train(False).- See Locally disabling gradient computation for a comparison between .eval() and several similar mechanisms that may be confused with it. - Returns:
- self 
- Return type:
- Module 
 
 - extra_repr() str¶
- Return the extra representation of the module. - To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable. 
 - float() Self¶
- Casts all floating point parameters and buffers to - floatdatatype.- Note - This method modifies the module in-place. - Returns:
- self 
- Return type:
- Module 
 
 - forward(tensordict: TensorDictBase, *, tensordict_out: TensorDictBase | None = None, logits_only: bool = False, **kwargs) TensorDictBase[source]¶
- Forward pass for the LLM policy. - Parameters:
- tensordict (TensorDictBase) – The input tensordict. 
- Keyword Arguments:
- tensordict_out (TensorDictBase | None) – The output tensordict. 
- logits_only (bool) – Whether to return only the logits. Only effective if generate=False. Defaults to False. 
 
 
 - get_batching_state()[source]¶
- Get the current batching state for debugging and monitoring. - Returns:
- A dictionary containing the current batching state including
- queue size, number of pending futures, and batch size. 
 
- Return type:
- dict 
 
 - get_buffer(target: str) Tensor¶
- Return the buffer given by - targetif it exists, otherwise throw an error.- See the docstring for - get_submodulefor a more detailed explanation of this method’s functionality as well as how to correctly specify- target.- Parameters:
- target – The fully-qualified string name of the buffer to look for. (See - get_submodulefor how to specify a fully-qualified string.)
- Returns:
- The buffer referenced by - target
- Return type:
- Raises:
- AttributeError – If the target string references an invalid path or resolves to something that is not a buffer 
 
 - get_dist(tensordict: TensorDictBase, tensordict_out: TensorDictBase | None = None, logits_key: NestedKey = 'logits', mask_key: NestedKey | None = None, as_padded_tensor: bool | None = None, as_nested_tensor: bool | None = None, padding_value: float | None = None, padding_side: str = 'left', layout: torch.layout | None = None, **kwargs) D.Distribution[source]¶
- Get distribution from logits/log-probs with optional masking. - Parameters:
- tensordict – Input tensordict 
- tensordict_out – Output tensordict (optional) 
- logits_key – Key for logits/log-probs 
- mask_key – Key for mask (optional). 
- as_padded_tensor – Whether to return padded tensor. Default is False. 
- as_nested_tensor – Whether to return nested tensor. Default is False. 
- padding_value – Value for padding. Default is 0.0 for logits and False for masks. 
- padding_side – Side for padding. Default is left by convention. 
- layout – Tensor layout 
- **kwargs – Additional arguments 
 
- Returns:
- Distribution (Categorical or LLMMaskedCategorical) 
 
 - get_extra_state() Any¶
- Return any extra state to include in the module’s state_dict. - Implement this and a corresponding - set_extra_state()for your module if you need to store extra state. This function is called when building the module’s state_dict().- Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes. - Returns:
- Any extra state to store in the module’s state_dict 
- Return type:
- object 
 
 - get_new_version(**kwargs)[source]¶
- Returns a new version of the module with altered parameters. - For instance, the generate parameter can be altered to enable text generation or log-probabilities computation. This is especially useful when one wants to avoid re-initializing the module with a new set of parameters, when the same parameters could be used to gather log-probs. - Positional arguments are not supported. - See the class constructor for more details about the parameters. 
 - get_parameter(target: str) Parameter¶
- Return the parameter given by - targetif it exists, otherwise throw an error.- See the docstring for - get_submodulefor a more detailed explanation of this method’s functionality as well as how to correctly specify- target.- Parameters:
- target – The fully-qualified string name of the Parameter to look for. (See - get_submodulefor how to specify a fully-qualified string.)
- Returns:
- The Parameter referenced by - target
- Return type:
- torch.nn.Parameter 
- Raises:
- AttributeError – If the target string references an invalid path or resolves to something that is not an - nn.Parameter
 
 - get_submodule(target: str) Module¶
- Return the submodule given by - targetif it exists, otherwise throw an error.- For example, let’s say you have an - nn.Module- Athat looks like this:- A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )- (The diagram shows an - nn.Module- A.- Awhich has a nested submodule- net_b, which itself has two submodules- net_cand- linear.- net_cthen has a submodule- conv.)- To check whether or not we have the - linearsubmodule, we would call- get_submodule("net_b.linear"). To check whether we have the- convsubmodule, we would call- get_submodule("net_b.net_c.conv").- The runtime of - get_submoduleis bounded by the degree of module nesting in- target. A query against- named_modulesachieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,- get_submoduleshould always be used.- Parameters:
- target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.) 
- Returns:
- The submodule referenced by - target
- Return type:
- Raises:
- AttributeError – If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of - nn.Module.
 
 - half() Self¶
- Casts all floating point parameters and buffers to - halfdatatype.- Note - This method modifies the module in-place. - Returns:
- self 
- Return type:
- Module 
 
 - ipu(device: Optional[Union[device, int]] = None) Self¶
- Move all model parameters and buffers to the IPU. - This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on IPU while being optimized. - Note - This method modifies the module in-place. - Parameters:
- device (int, optional) – if specified, all parameters will be copied to that device 
- Returns:
- self 
- Return type:
- Module 
 
 - static is_tdmodule_compatible(module)¶
- Checks if a module is compatible with TensorDictModule API. 
 - load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)¶
- Copy parameters and buffers from - state_dictinto this module and its descendants.- If - strictis- True, then the keys of- state_dictmust exactly match the keys returned by this module’s- state_dict()function.- Warning - If - assignis- Truethe optimizer must be created after the call to- load_state_dictunless- get_swap_module_params_on_conversion()is- True.- Parameters:
- state_dict (dict) – a dict containing parameters and persistent buffers. 
- strict (bool, optional) – whether to strictly enforce that the keys in - state_dictmatch the keys returned by this module’s- state_dict()function. Default:- True
- assign (bool, optional) – When set to - False, the properties of the tensors in the current module are preserved whereas setting it to- Truepreserves properties of the Tensors in the state dict. The only exception is the- requires_gradfield of- Parameterfor which the value from the module is preserved. Default:- False
 
- Returns:
- missing_keysis a list of str containing any keys that are expected
- by this module but missing from the provided - state_dict.
 
- unexpected_keysis a list of str containing the keys that are not
- expected by this module but present in the provided - state_dict.
 
 
- Return type:
- NamedTuplewith- missing_keysand- unexpected_keysfields
 - Note - If a parameter or buffer is registered as - Noneand its corresponding key exists in- state_dict,- load_state_dict()will raise a- RuntimeError.
 - modules() Iterator[Module]¶
- Return an iterator over all modules in the network. - Yields:
- Module – a module in the network 
 - Note - Duplicate modules are returned only once. In the following example, - lwill be returned only once.- Example: - >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True) 
 - mtia(device: Optional[Union[device, int]] = None) Self¶
- Move all model parameters and buffers to the MTIA. - This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on MTIA while being optimized. - Note - This method modifies the module in-place. - Parameters:
- device (int, optional) – if specified, all parameters will be copied to that device 
- Returns:
- self 
- Return type:
- Module 
 
 - named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[tuple[str, torch.Tensor]]¶
- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - Parameters:
- prefix (str) – prefix to prepend to all buffer names. 
- recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. 
- remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True. 
 
- Yields:
- (str, torch.Tensor) – Tuple containing the name and buffer 
 - Example: - >>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size()) 
 - named_children() Iterator[tuple[str, 'Module']]¶
- Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - Yields:
- (str, Module) – Tuple containing a name and child module 
 - Example: - >>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module) 
 - named_modules(memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True)¶
- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - Parameters:
- memo – a memo to store the set of modules already added to the result 
- prefix – a prefix that will be added to the name of the module 
- remove_duplicate – whether to remove the duplicated module instances in the result or not 
 
- Yields:
- (str, Module) – Tuple of name and module 
 - Note - Duplicate modules are returned only once. In the following example, - lwill be returned only once.- Example: - >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True)) 
 - named_parameters(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[tuple[str, torch.nn.parameter.Parameter]]¶
- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - Parameters:
- prefix (str) – prefix to prepend to all parameter names. 
- recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. 
- remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True. 
 
- Yields:
- (str, Parameter) – Tuple containing the name and parameter 
 - Example: - >>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size()) 
 - parameters(recurse: bool = True) Iterator[Parameter]¶
- Return an iterator over module parameters. - This is typically passed to an optimizer. - Parameters:
- recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. 
- Yields:
- Parameter – module parameter 
 - Example: - >>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L) 
 - register_backward_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor], Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]]) RemovableHandle¶
- Register a backward hook on the module. - This function is deprecated in favor of - register_full_backward_hook()and the behavior of this function will change in future versions.- Returns:
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type:
- torch.utils.hooks.RemovableHandle
 
 - register_buffer(name: str, tensor: Optional[Tensor], persistent: bool = True) None¶
- Add a buffer to the module. - This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm’s - running_meanis not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting- persistentto- False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’s- state_dict.- Buffers can be accessed as attributes using given names. - Parameters:
- name (str) – name of the buffer. The buffer can be accessed from this module using the given name 
- tensor (Tensor or None) – buffer to be registered. If - None, then operations that run on buffers, such as- cuda, are ignored. If- None, the buffer is not included in the module’s- state_dict.
- persistent (bool) – whether the buffer is part of this module’s - state_dict.
 
 - Example: - >>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features)) 
 - register_collector(collector: LLMCollector)[source]¶
- Registers a weak reference to the container collector. - This is automatically called by the - LLMCollectorclass.
 - register_forward_hook(hook: Union[Callable[[T, tuple[Any, ...], Any], Optional[Any]], Callable[[T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle¶
- Register a forward hook on the module. - The hook will be called every time after - forward()has computed an output.- If - with_kwargsis- Falseor not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the- forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after- forward()is called. The hook should have the following signature:- hook(module, args, output) -> None or modified output - If - with_kwargsis- True, the forward hook will be passed the- kwargsgiven to the forward function and be expected to return the output possibly modified. The hook should have the following signature:- hook(module, args, kwargs, output) -> None or modified output - Parameters:
- hook (Callable) – The user defined hook to be registered. 
- prepend (bool) – If - True, the provided- hookwill be fired before all existing- forwardhooks on this- torch.nn.Module. Otherwise, the provided- hookwill be fired after all existing- forwardhooks on this- torch.nn.Module. Note that global- forwardhooks registered with- register_module_forward_hook()will fire before all hooks registered by this method. Default:- False
- with_kwargs (bool) – If - True, the- hookwill be passed the kwargs given to the forward function. Default:- False
- always_call (bool) – If - Truethe- hookwill be run regardless of whether an exception is raised while calling the Module. Default:- False
 
- Returns:
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type:
- torch.utils.hooks.RemovableHandle
 
 - register_forward_pre_hook(hook: Union[Callable[[T, tuple[Any, ...]], Optional[Any]], Callable[[T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle¶
- Register a forward pre-hook on the module. - The hook will be called every time before - forward()is invoked.- If - with_kwargsis false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the- forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:- hook(module, args) -> None or modified input - If - with_kwargsis true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:- hook(module, args, kwargs) -> None or a tuple of modified input and kwargs - Parameters:
- hook (Callable) – The user defined hook to be registered. 
- prepend (bool) – If true, the provided - hookwill be fired before all existing- forward_prehooks on this- torch.nn.Module. Otherwise, the provided- hookwill be fired after all existing- forward_prehooks on this- torch.nn.Module. Note that global- forward_prehooks registered with- register_module_forward_pre_hook()will fire before all hooks registered by this method. Default:- False
- with_kwargs (bool) – If true, the - hookwill be passed the kwargs given to the forward function. Default:- False
 
- Returns:
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type:
- torch.utils.hooks.RemovableHandle
 
 - register_full_backward_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor], Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]], prepend: bool = False) RemovableHandle¶
- Register a backward hook on the module. - The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows: - Ordinarily, the hook fires when the gradients are computed with respect to the module inputs. 
- If none of the module inputs require gradients, the hook will fire when the gradients are computed with respect to module outputs. 
- If none of the module outputs require gradients, then the hooks will not fire. 
 - The hook should have the following signature: - hook(module, grad_input, grad_output) -> tuple(Tensor) or None - The - grad_inputand- grad_outputare tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of- grad_inputin subsequent computations.- grad_inputwill only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in- grad_inputand- grad_outputwill be- Nonefor all non-Tensor arguments.- For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function. - Warning - Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error. - Parameters:
- hook (Callable) – The user-defined hook to be registered. 
- prepend (bool) – If true, the provided - hookwill be fired before all existing- backwardhooks on this- torch.nn.Module. Otherwise, the provided- hookwill be fired after all existing- backwardhooks on this- torch.nn.Module. Note that global- backwardhooks registered with- register_module_full_backward_hook()will fire before all hooks registered by this method.
 
- Returns:
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type:
- torch.utils.hooks.RemovableHandle
 
 - register_full_backward_pre_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]], prepend: bool = False) RemovableHandle¶
- Register a backward pre-hook on the module. - The hook will be called every time the gradients for the module are computed. The hook should have the following signature: - hook(module, grad_output) -> tuple[Tensor] or None - The - grad_outputis a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of- grad_outputin subsequent computations. Entries in- grad_outputwill be- Nonefor all non-Tensor arguments.- For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function. - Warning - Modifying inputs inplace is not allowed when using backward hooks and will raise an error. - Parameters:
- hook (Callable) – The user-defined hook to be registered. 
- prepend (bool) – If true, the provided - hookwill be fired before all existing- backward_prehooks on this- torch.nn.Module. Otherwise, the provided- hookwill be fired after all existing- backward_prehooks on this- torch.nn.Module. Note that global- backward_prehooks registered with- register_module_full_backward_pre_hook()will fire before all hooks registered by this method.
 
- Returns:
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type:
- torch.utils.hooks.RemovableHandle
 
 - register_load_state_dict_post_hook(hook)¶
- Register a post-hook to be run after module’s - load_state_dict()is called.- It should have the following signature::
- hook(module, incompatible_keys) -> None 
 - The - moduleargument is the current module that this hook is registered on, and the- incompatible_keysargument is a- NamedTupleconsisting of attributes- missing_keysand- unexpected_keys.- missing_keysis a- listof- strcontaining the missing keys and- unexpected_keysis a- listof- strcontaining the unexpected keys.- The given incompatible_keys can be modified inplace if needed. - Note that the checks performed when calling - load_state_dict()with- strict=Trueare affected by modifications the hook makes to- missing_keysor- unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when- strict=True, and clearing out both missing and unexpected keys will avoid an error.- Returns:
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type:
- torch.utils.hooks.RemovableHandle
 
 - register_load_state_dict_pre_hook(hook)¶
- Register a pre-hook to be run before module’s - load_state_dict()is called.- It should have the following signature::
- hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950 
 - Parameters:
- hook (Callable) – Callable hook that will be invoked before loading the state dict. 
 
 - register_module(name: str, module: Optional[Module]) None¶
- Alias for - add_module().
 - register_parameter(name: str, param: Optional[Parameter]) None¶
- Add a parameter to the module. - The parameter can be accessed as an attribute using given name. - Parameters:
- name (str) – name of the parameter. The parameter can be accessed from this module using the given name 
- param (Parameter or None) – parameter to be added to the module. If - None, then operations that run on parameters, such as- cuda, are ignored. If- None, the parameter is not included in the module’s- state_dict.
 
 
 - register_state_dict_post_hook(hook)¶
- Register a post-hook for the - state_dict()method.- It should have the following signature::
- hook(module, state_dict, prefix, local_metadata) -> None 
 - The registered hooks can modify the - state_dictinplace.
 - register_state_dict_pre_hook(hook)¶
- Register a pre-hook for the - state_dict()method.- It should have the following signature::
- hook(module, prefix, keep_vars) -> None 
 - The registered hooks can be used to perform pre-processing before the - state_dictcall is made.
 - requires_grad_(requires_grad: bool = True) Self¶
- Change if autograd should record operations on parameters in this module. - This method sets the parameters’ - requires_gradattributes in-place.- This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training). - See Locally disabling gradient computation for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it. - Parameters:
- requires_grad (bool) – whether autograd should record operations on parameters in this module. Default: - True.
- Returns:
- self 
- Return type:
- Module 
 
 - reset_out_keys()¶
- Resets the - out_keysattribute to its orignal value.- Returns: the same module, with its original - out_keysvalues.- Examples - >>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule, TensorDictSequential >>> import torch >>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"]) >>> mod.select_out_keys("d") >>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []) >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) >>> mod.reset_out_keys() >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) 
 - reset_parameters_recursive(parameters: Optional[TensorDictBase] = None) Optional[TensorDictBase]¶
- Recursively reset the parameters of the module and its children. - Parameters:
- parameters (TensorDict of parameters, optional) – If set to None, the module will reset using self.parameters(). Otherwise, we will reset the parameters in the tensordict in-place. This is useful for functional modules where the parameters are not stored in the module itself. 
- Returns:
- A tensordict of the new parameters, only if parameters was not None. 
 - Examples - >>> from tensordict.nn import TensorDictModule >>> from torch import nn >>> net = nn.Sequential(nn.Linear(2,3), nn.ReLU()) >>> old_param = net[0].weight.clone() >>> module = TensorDictModule(net, in_keys=['bork'], out_keys=['dork']) >>> module.reset_parameters() >>> (old_param == net[0].weight).any() tensor(False) - This method also supports functional parameter sampling: - >>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule >>> from torch import nn >>> net = nn.Sequential(nn.Linear(2,3), nn.ReLU()) >>> module = TensorDictModule(net, in_keys=['bork'], out_keys=['dork']) >>> params = TensorDict.from_module(module) >>> old_params = params.clone(recurse=True) >>> module.reset_parameters(params) >>> (old_params == params).any() False 
 - select_out_keys(*out_keys) TensorDictModuleBase¶
- Selects the keys that will be found in the output tensordict. - This is useful whenever one wants to get rid of intermediate keys in a complicated graph, or when the presence of these keys may trigger unexpected behaviours. - The original - out_keyscan still be accessed via- module.out_keys_source.- Parameters:
- *out_keys (a sequence of strings or tuples of strings) – the out_keys that should be found in the output tensordict. 
 - Returns: the same module, modified in-place with updated - out_keys.- The simplest usage is with - TensorDictModule:- Examples - >>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule, TensorDictSequential >>> import torch >>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"]) >>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []) >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) >>> mod.select_out_keys("d") >>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []) >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) - This feature will also work with dispatched arguments: .. rubric:: Examples - >>> mod(torch.zeros(()), torch.ones(())) tensor(2.) - This change will occur in-place (ie the same module will be returned with an updated list of out_keys). It can be reverted using the - TensorDictModuleBase.reset_out_keys()method.- Examples - >>> mod.reset_out_keys() >>> mod(TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) - This will work with other classes too, such as Sequential: .. rubric:: Examples - >>> from tensordict.nn import TensorDictSequential >>> seq = TensorDictSequential( ... TensorDictModule(lambda x: x+1, in_keys=["x"], out_keys=["y"]), ... TensorDictModule(lambda x: x+1, in_keys=["y"], out_keys=["z"]), ... ) >>> td = TensorDict({"x": torch.zeros(())}, []) >>> seq(td) TensorDict( fields={ x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), y: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) >>> seq.select_out_keys("z") >>> td = TensorDict({"x": torch.zeros(())}, []) >>> seq(td) TensorDict( fields={ x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) 
 - set_extra_state(state: Any) None¶
- Set extra state contained in the loaded state_dict. - This function is called from - load_state_dict()to handle any extra state found within the state_dict. Implement this function and a corresponding- get_extra_state()for your module if you need to store extra state within its state_dict.- Parameters:
- state (dict) – Extra state from the state_dict 
 
 - set_submodule(target: str, module: Module, strict: bool = False) None¶
- Set the submodule given by - targetif it exists, otherwise throw an error.- Note - If - strictis set to- False(default), the method will replace an existing submodule or create a new submodule if the parent module exists. If- strictis set to- True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.- For example, let’s say you have an - nn.Module- Athat looks like this:- A( (net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )- (The diagram shows an - nn.Module- A.- Ahas a nested submodule- net_b, which itself has two submodules- net_cand- linear.- net_cthen has a submodule- conv.)- To override the - Conv2dwith a new submodule- Linear, you could call- set_submodule("net_b.net_c.conv", nn.Linear(1, 1))where- strictcould be- Trueor- False- To add a new submodule - Conv2dto the existing- net_bmodule, you would call- set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).- In the above if you set - strict=Trueand call- set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because- net_bdoes not have a submodule named- conv.- Parameters:
- target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.) 
- module – The module to set the submodule to. 
- strict – If - False, the method will replace an existing submodule or create a new submodule if the parent module exists. If- True, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn’t already exist.
 
- Raises:
- ValueError – If the - targetstring is empty or if- moduleis not an instance of- nn.Module.
- AttributeError – If at any point along the path resulting from the - targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance of- nn.Module.
 
 
 - state_dict(*args, destination=None, prefix='', keep_vars=False)¶
- Return a dictionary containing references to the whole state of the module. - Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to - Noneare not included.- Note - The returned object is a shallow copy. It contains references to the module’s parameters and buffers. - Warning - Currently - state_dict()also accepts positional arguments for- destination,- prefixand- keep_varsin order. However, this is being deprecated and keyword arguments will be enforced in future releases.- Warning - Please avoid the use of argument - destinationas it is not designed for end-users.- Parameters:
- destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an - OrderedDictwill be created and returned. Default:- None.
- prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default: - ''.
- keep_vars (bool, optional) – by default the - Tensors returned in the state dict are detached from autograd. If it’s set to- True, detaching will not be performed. Default:- False.
 
- Returns:
- a dictionary containing a whole state of the module 
- Return type:
- dict 
 - Example: - >>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight'] 
 - to(*args, **kwargs)¶
- Move and/or cast the parameters and buffers. - This can be called as - to(device=None, dtype=None, non_blocking=False)
 - to(dtype, non_blocking=False)
 - to(tensor, non_blocking=False)
 - to(memory_format=torch.channels_last)
 - Its signature is similar to - torch.Tensor.to(), but only accepts floating point or complex- dtypes. In addition, this method will only cast the floating point or complex parameters and buffers to- dtype(if given). The integral parameters and buffers will be moved- device, if that is given, but with dtypes unchanged. When- non_blockingis set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.- See below for examples. - Note - This method modifies the module in-place. - Parameters:
- device ( - torch.device) – the desired device of the parameters and buffers in this module
- dtype ( - torch.dtype) – the desired floating point or complex dtype of the parameters and buffers in this module
- tensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module 
- memory_format ( - torch.memory_format) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
 
- Returns:
- self 
- Return type:
- Module 
 - Examples: - >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128) 
 - to_empty(*, device: Optional[Union[int, str, device]], recurse: bool = True) Self¶
- Move the parameters and buffers to the specified device without copying storage. - Parameters:
- device ( - torch.device) – The desired device of the parameters and buffers in this module.
- recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device. 
 
- Returns:
- self 
- Return type:
- Module 
 
 - train(mode: bool = True) Self¶
- Set the module in training mode. - This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. - Dropout,- BatchNorm, etc.- Parameters:
- mode (bool) – whether to set training mode ( - True) or evaluation mode (- False). Default:- True.
- Returns:
- self 
- Return type:
- Module 
 
 - type(dst_type: Union[dtype, str]) Self¶
- Casts all parameters and buffers to - dst_type.- Note - This method modifies the module in-place. - Parameters:
- dst_type (type or string) – the desired type 
- Returns:
- self 
- Return type:
- Module 
 
 - xpu(device: Optional[Union[device, int]] = None) Self¶
- Move all model parameters and buffers to the XPU. - This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized. - Note - This method modifies the module in-place. - Parameters:
- device (int, optional) – if specified, all parameters will be copied to that device 
- Returns:
- self 
- Return type:
- Module 
 
 - zero_grad(set_to_none: bool = True) None¶
- Reset gradients of all model parameters. - See similar function under - torch.optim.Optimizerfor more context.- Parameters:
- set_to_none (bool) – instead of setting to zero, set the grads to None. See - torch.optim.Optimizer.zero_grad()for details.