NoisyLazyLinear¶
- class torchrl.modules.NoisyLazyLinear(out_features: int, bias: bool = True, device: DEVICE_TYPING | None = None, dtype: torch.dtype | None = None, std_init: float = 0.1)[source]¶
- Noisy Lazy Linear Layer. - This class makes the Noisy Linear layer lazy, in that the in_feature argument does not need to be passed at initialization (but is inferred after the first call to the layer). - For more context on noisy layers, see the NoisyLinear class. - Parameters:
- out_features (int) – out features dimension 
- bias (bool, optional) – if - True, a bias term will be added to the matrix multiplication: Ax + b. Defaults to- True.
- device (DEVICE_TYPING, optional) – device of the layer. Defaults to - "cpu".
- dtype (torch.dtype, optional) – dtype of the parameters. Defaults to the default PyTorch dtype. 
- std_init (scalar) – initial value of the Gaussian standard deviation before optimization. Defaults to 0.1