BaseDatasetExperienceReplay¶
- class torchrl.data.datasets.BaseDatasetExperienceReplay(*, priority_key: str = 'td_error', **kwargs)[source]¶
Parent class for offline datasets.
- add(data: TensorDictBase) int ¶
Add a single element to the replay buffer.
- Parameters:
data (Any) – data to be added to the replay buffer
- Returns:
index where the data lives in the replay buffer.
- append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer ¶
Appends transform at the end.
Transforms are applied in order when sample is called.
- Parameters:
transform (Transform) – The transform to be appended
- Keyword Arguments:
invert (bool, optional) – if
True
, the transform will be inverted (forward calls will be called during writing and inverse calls during reading). Defaults toFalse
.
Example
>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4) >>> data = TensorDict({"a": torch.zeros(10)}, [10]) >>> def t(data): ... data += 1 ... return data >>> rb.append_transform(t, invert=True) >>> rb.extend(data) >>> assert (data == 1).all()
- classmethod as_remote(remote_config=None)¶
Creates an instance of a remote ray class.
- Parameters:
cls (Python Class) – class to be remotely instantiated.
remote_config (dict) – the quantity of CPU cores to reserve for this class. Defaults to torchrl.collectors.distributed.ray.DEFAULT_REMOTE_CLASS_CONFIG.
- Returns:
A function that creates ray remote class instances.
- property batch_size¶
The batch size of the replay buffer.
The batch size can be overriden by setting the batch_size parameter in the
sample()
method.It defines both the number of samples returned by
sample()
and the number of samples that are yielded by theReplayBuffer
iterator.
- abstract property data_path: Path¶
Path to the dataset, including split.
- abstract property data_path_root: Path¶
Path to the dataset root.
- dumps(path)¶
Saves the replay buffer on disk at the specified path.
- Parameters:
path (Path or str) – path where to save the replay buffer.
Examples
>>> import tempfile >>> import tqdm >>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler >>> import torch >>> from tensordict import TensorDict >>> # Build and populate the replay buffer >>> S = 1_000_000 >>> sampler = PrioritizedSampler(S, 1.1, 1.0) >>> # sampler = RandomSampler() >>> storage = LazyMemmapStorage(S) >>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler) >>> >>> for _ in tqdm.tqdm(range(100)): ... td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100]) ... rb.extend(td) ... sample = rb.sample(32) ... rb.update_tensordict_priority(sample) >>> # save and load the buffer >>> with tempfile.TemporaryDirectory() as tmpdir: ... rb.dumps(tmpdir) ... ... sampler = PrioritizedSampler(S, 1.1, 1.0) ... # sampler = RandomSampler() ... storage = LazyMemmapStorage(S) ... rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler) ... rb_load.loads(tmpdir) ... assert len(rb) == len(rb_load)
- empty(empty_write_count: bool = True)¶
Empties the replay buffer and reset cursor to 0.
- Parameters:
empty_write_count (bool, optional) – Whether to empty the write_count attribute. Defaults to True.
- extend(tensordicts: TensorDictBase, *, update_priority: bool | None = None) torch.Tensor ¶
Extends the replay buffer with a batch of data.
- Parameters:
tensordicts (TensorDictBase) – The data to extend the replay buffer with.
- Keyword Arguments:
update_priority (bool, optional) – Whether to update the priority of the data. Defaults to True.
- Returns:
The indices of the data that were added to the replay buffer.
- insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer ¶
Inserts transform.
Transforms are executed in order when sample is called.
- Parameters:
index (int) – Position to insert the transform.
transform (Transform) – The transform to be appended
- Keyword Arguments:
invert (bool, optional) – if
True
, the transform will be inverted (forward calls will be called during writing and inverse calls during reading). Defaults toFalse
.
- loads(path)¶
Loads a replay buffer state at the given path.
The buffer should have matching components and be saved using
dumps()
.- Parameters:
path (Path or str) – path where the replay buffer was saved.
See
dumps()
for more info.
- next()¶
Returns the next item in the replay buffer.
This method is used to iterate over the replay buffer in contexts where __iter__ is not available, such as
RayReplayBuffer
.
- preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage [source]¶
Preprocesses a dataset and returns a new storage with the formatted data.
The data transform must be unitary (work on a single sample of the dataset).
Args and Keyword Args are forwarded to
map()
.The dataset can subsequently be deleted using
delete()
.- Keyword Arguments:
dest (path or equivalent) – a path to the location of the new dataset.
num_frames (int, optional) – if provided, only the first num_frames will be transformed. This is useful to debug the transform at first.
Returns: A new storage to be used within a
ReplayBuffer
instance.Examples
>>> from torchrl.data.datasets import MinariExperienceReplay >>> >>> data = MinariExperienceReplay( ... list(MinariExperienceReplay.available_datasets)[0], ... batch_size=32 ... ) >>> print(data) MinariExperienceReplay( storages=TensorStorage(TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)), samplers=RandomSampler, writers=ImmutableDatasetWriter(), batch_size=32, transform=Compose( ), collate_fn=<function _collate_id at 0x120e21dc0>) >>> from torchrl.envs import CatTensors, Compose >>> from tempfile import TemporaryDirectory >>> >>> cat_tensors = CatTensors( ... in_keys=[("observation", "observation"), ("observation", "achieved_goal"), ... ("observation", "desired_goal")], ... out_key="obs" ... ) >>> cat_next_tensors = CatTensors( ... in_keys=[("next", "observation", "observation"), ... ("next", "observation", "achieved_goal"), ... ("next", "observation", "desired_goal")], ... out_key=("next", "obs") ... ) >>> t = Compose(cat_tensors, cat_next_tensors) >>> >>> def func(td): ... td = td.select( ... "action", ... "episode", ... ("next", "done"), ... ("next", "observation"), ... ("next", "reward"), ... ("next", "terminated"), ... ("next", "truncated"), ... "observation" ... ) ... td = t(td) ... return td >>> with TemporaryDirectory() as tmpdir: ... new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir) ... rb = ReplayBuffer(storage=new_storage) ... print(rb) ReplayBuffer( storage=TensorStorage( data=TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), shape=torch.Size([1000000]), len=1000000, max_size=1000000), sampler=RandomSampler(), writer=RoundRobinWriter(cursor=0, full_storage=True), batch_size=None, collate_fn=<function _collate_id at 0x168406fc0>)
- register_load_hook(hook: Callable[[Any], Any])¶
Registers a load hook for the storage.
Note
Hooks are currently not serialized when saving a replay buffer: they must be manually re-initialized every time the buffer is created.
- register_save_hook(hook: Callable[[Any], Any])¶
Registers a save hook for the storage.
Note
Hooks are currently not serialized when saving a replay buffer: they must be manually re-initialized every time the buffer is created.
- sample(batch_size: int | None = None, return_info: bool = False, include_info: bool | None = None) TensorDictBase ¶
Samples a batch of data from the replay buffer.
Uses Sampler to sample indices, and retrieves them from Storage.
- Parameters:
batch_size (int, optional) – size of data to be collected. If none is provided, this method will sample a batch-size as indicated by the sampler.
return_info (bool) – whether to return info. If True, the result is a tuple (data, info). If False, the result is the data.
- Returns:
A tensordict containing a batch of data selected in the replay buffer. A tuple containing this tensordict and info if return_info flag is set to True.
- set_sampler(sampler: Sampler)¶
Sets a new sampler in the replay buffer and returns the previous sampler.
- set_storage(storage: Storage, collate_fn: Callable | None = None)¶
Sets a new storage in the replay buffer and returns the previous storage.
- Parameters:
storage (Storage) – the new storage for the buffer.
collate_fn (callable, optional) – if provided, the collate_fn is set to this value. Otherwise it is reset to a default value.
- property write_count¶
The total number of items written so far in the buffer through add and extend.