Accuracy#
- class ignite.metrics.Accuracy(output_transform=<function Accuracy.<lambda>>, is_multilabel=False, device=device(type='cpu'), skip_unrolling=False)[source]#
Calculates the accuracy for binary, multiclass and multilabel data.
where is true positives, is true negatives, is false positives and is false negatives.
updatemust receive output of the form(y_pred, y).y_pred must be in the following shape (batch_size, num_categories, …) or (batch_size, …).
y must be in the following shape (batch_size, …).
y and y_pred must be in the following shape of (batch_size, num_categories, …) and num_categories must be greater than 1 for multilabel cases.
- Parameters
output_transform (Callable) – a callable that is used to transform the
Engine’sprocess_function’s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs.is_multilabel (bool) – flag to use in multilabel case. By default, False.
device (Union[str, device]) – specifies which device updates are accumulated on. Setting the metric’s device to be the same as your
updatearguments ensures theupdatemethod is non-blocking. By default, CPU.skip_unrolling (bool) – specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if
y_predcontains multi-ouput as(y_pred_a, y_pred_b)Alternatively,output_transformcan be used to handle this.
Examples
For more information on how metric works with
Engine, visit Attach Engine API.from collections import OrderedDict import torch from torch import nn, optim from ignite.engine import * from ignite.handlers import * from ignite.metrics import * from ignite.metrics.clustering import * from ignite.metrics.regression import * from ignite.utils import * # create default evaluator for doctests def eval_step(engine, batch): return batch default_evaluator = Engine(eval_step) # create default optimizer for doctests param_tensor = torch.zeros([1], requires_grad=True) default_optimizer = torch.optim.SGD([param_tensor], lr=0.1) # create default trainer for doctests # as handlers could be attached to the trainer, # each test must define his own trainer using `.. testsetup:` def get_default_trainer(): def train_step(engine, batch): return batch return Engine(train_step) # create default model for doctests default_model = nn.Sequential(OrderedDict([ ('base', nn.Linear(4, 2)), ('fc', nn.Linear(2, 1)) ])) manual_seed(666)
Binary case
metric = Accuracy() metric.attach(default_evaluator, "accuracy") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([1, 0, 1, 0, 1, 1]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["accuracy"])
0.6666...
Multiclass case
metric = Accuracy() metric.attach(default_evaluator, "accuracy") y_true = torch.tensor([2, 0, 2, 1, 0, 1]) y_pred = torch.tensor([ [0.0266, 0.1719, 0.3055], [0.6886, 0.3978, 0.8176], [0.9230, 0.0197, 0.8395], [0.1785, 0.2670, 0.6084], [0.8448, 0.7177, 0.7288], [0.7748, 0.9542, 0.8573], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["accuracy"])
0.5
Multilabel case
metric = Accuracy(is_multilabel=True) metric.attach(default_evaluator, "accuracy") y_true = torch.tensor([ [0, 0, 1, 0, 1], [1, 0, 1, 0, 0], [0, 0, 0, 0, 1], [1, 0, 0, 0, 1], [0, 1, 1, 0, 1], ]) y_pred = torch.tensor([ [1, 1, 0, 0, 0], [1, 0, 1, 0, 0], [1, 0, 0, 0, 0], [1, 0, 1, 1, 1], [1, 1, 0, 0, 1], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["accuracy"])
0.2
In binary and multilabel cases, the elements of y and y_pred should have 0 or 1 values. Thresholding of predictions can be done as below:
def thresholded_output_transform(output): y_pred, y = output y_pred = torch.round(y_pred) return y_pred, y metric = Accuracy(output_transform=thresholded_output_transform) metric.attach(default_evaluator, "accuracy") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([0.6, 0.2, 0.9, 0.4, 0.7, 0.65]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["accuracy"])
0.6666...
Changed in version 0.5.1:
skip_unrollingargument is added.Methods
Computes the metric based on its accumulated state.
Resets the metric to its initial state.
Updates the metric's state using the passed batch output.
- compute()[source]#
Computes the metric based on its accumulated state.
By default, this is called at the end of each epoch.
- Returns
- the actual quantity of interest. However, if a
Mappingis returned, it will be (shallow) flattened into engine.state.metrics whencompleted()is called. - Return type
Any
- Raises
NotComputableError – raised when the metric cannot be computed.