Rate this Page

Struct SoftMarginLossImpl#

Inheritance Relationships#

Base Type#

Struct Documentation#

struct SoftMarginLossImpl : public torch::nn::Cloneable<SoftMarginLossImpl>#

Creates a criterion that optimizes a two-class classification logistic loss between input tensor :math:x and target tensor :math:y (containing 1 or -1).

See https://pytorch.org/docs/main/nn.html#torch.nn.SoftMarginLoss to learn about the exact behavior of this module.

See the documentation for torch::nn::SoftMarginLossOptions class to learn what constructor arguments are supported for this module.

Example:

SoftMarginLoss model(SoftMarginLossOptions(torch::kNone));

Public Functions

explicit SoftMarginLossImpl(SoftMarginLossOptions options_ = {})#
virtual void pretty_print(std::ostream &stream) const override#

Pretty prints the SoftMarginLoss module into the given stream.

virtual void reset() override#

reset() must perform initialization of all members with reference semantics, most importantly parameters, buffers and submodules.

Tensor forward(const Tensor &input, const Tensor &target)#

Public Members

SoftMarginLossOptions options#

The options with which this Module was constructed.