Rate this Page

Struct BatchNormFuncOptions#

Page Contents

Struct Documentation#

struct BatchNormFuncOptions#

Options for torch::nn::functional::batch_norm.

Example:

namespace F = torch::nn::functional;
F::batch_norm(input, mean, variance,
F::BatchNormFuncOptions().weight(weight).bias(bias).momentum(0.1).eps(1e-05).training(false));

Public Functions

inline auto weight(const Tensor &new_weight) -> decltype(*this)#
inline auto weight(Tensor &&new_weight) -> decltype(*this)#
inline const Tensor &weight() const noexcept#
inline Tensor &weight() noexcept#
inline auto bias(const Tensor &new_bias) -> decltype(*this)#
inline auto bias(Tensor &&new_bias) -> decltype(*this)#
inline const Tensor &bias() const noexcept#
inline Tensor &bias() noexcept#
inline auto training(const bool &new_training) -> decltype(*this)#
inline auto training(bool &&new_training) -> decltype(*this)#
inline const bool &training() const noexcept#
inline bool &training() noexcept#
inline auto momentum(const double &new_momentum) -> decltype(*this)#

A momentum multiplier for the mean and variance.

Changing this parameter after construction is effective.

inline auto momentum(double &&new_momentum) -> decltype(*this)#
inline const double &momentum() const noexcept#
inline double &momentum() noexcept#
inline auto eps(const double &new_eps) -> decltype(*this)#

The epsilon value added for numerical stability.

Changing this parameter after construction is effective.

inline auto eps(double &&new_eps) -> decltype(*this)#
inline const double &eps() const noexcept#
inline double &eps() noexcept#