Shortcuts

transformed_env_constructor

torchrl.trainers.helpers.transformed_env_constructor(cfg: DictConfig, video_tag: str = '', logger: Logger | None = None, stats: dict | None = None, norm_obs_only: bool = False, use_env_creator: bool = False, custom_env_maker: Callable | None = None, custom_env: EnvBase | None = None, return_transformed_envs: bool = True, action_dim_gsde: int | None = None, state_dim_gsde: int | None = None, batch_dims: int | None = 0, obs_norm_state_dict: dict | None = None) Callable | EnvCreator[source]

Returns an environment creator from an argparse.Namespace built with the appropriate parser constructor.

Parameters:
  • cfg (DictConfig) – a DictConfig containing the arguments of the script.

  • video_tag (str, optional) – video tag to be passed to the Logger object

  • logger (Logger, optional) – logger associated with the script

  • stats (dict, optional) – a dictionary containing the loc and scale for the ObservationNorm transform

  • norm_obs_only (bool, optional) – If True and VecNorm is used, the reward won’t be normalized online. Default is False.

  • use_env_creator (bool, optional) – whether the EnvCreator class should be used. By using EnvCreator, one can make sure that running statistics will be put in shared memory and accessible for all workers when using a VecNorm transform. Default is True.

  • custom_env_maker (callable, optional) – if your env maker is not part of torchrl env wrappers, a custom callable can be passed instead. In this case it will override the constructor retrieved from args.

  • custom_env (EnvBase, optional) – if an existing environment needs to be transformed_in, it can be passed directly to this helper. custom_env_maker and custom_env are exclusive features.

  • return_transformed_envs (bool, optional) – if True, a transformed_in environment is returned.

  • action_dim_gsde (int, Optional) – if gSDE is used, this can present the action dim to initialize the noise. Make sure this is indicated in environment executed in parallel.

  • state_dim_gsde – if gSDE is used, this can present the state dim to initialize the noise. Make sure this is indicated in environment executed in parallel.

  • batch_dims (int, optional) – number of dimensions of a batch of data. If a single env is used, it should be 0 (default). If multiple envs are being transformed in parallel, it should be set to 1 (or the number of dims of the batch).

  • obs_norm_state_dict (dict, optional) – the state_dict of the ObservationNorm transform to be loaded into the environment

Docs

Lorem ipsum dolor sit amet, consectetur

View Docs

Tutorials

Lorem ipsum dolor sit amet, consectetur

View Tutorials

Resources

Lorem ipsum dolor sit amet, consectetur

View Resources