Shortcuts

torchrl.trainers package

The trainer package provides utilities to write re-usable training scripts. The core idea is to use a trainer that implements a nested loop, where the outer loop runs the data collection steps and the inner loop the optimization steps.

Key Features

  • Modular hook system: Customize training at 10 different points in the loop

  • Checkpointing support: Save and restore training state with torch or torchsnapshot

  • Algorithm trainers: High-level trainers for PPO, SAC with Hydra configuration

  • Builder helpers: Utilities for constructing collectors, losses, and replay buffers

Quick Example

from torchrl.trainers import Trainer
from torchrl.trainers import UpdateWeights, LogScalar

# Create trainer
trainer = Trainer(
    collector=collector,
    total_frames=1000000,
    loss_module=loss,
    optimizer=optimizer,
)

# Register hooks
UpdateWeights(collector, 10).register(trainer)
LogScalar("reward").register(trainer)

# Train
trainer.train()

Documentation Sections

Docs

Lorem ipsum dolor sit amet, consectetur

View Docs

Tutorials

Lorem ipsum dolor sit amet, consectetur

View Tutorials

Resources

Lorem ipsum dolor sit amet, consectetur

View Resources