GRPOLoss¶
- class torchrl.objectives.llm.GRPOLoss(*args, **kwargs)[source]¶
GRPO loss.
- The clipped importance weighted loss is computed as follows:
loss = -min( weight * advantage, min(max(weight, 1-eps), 1+eps) * advantage)
- Parameters:
actor_network (ProbabilisticTensorDictSequential) – policy operator.
Note
It is critical to keep your model in eval mode during GRPO training to ensure deterministic behavior and correct importance sampling. A mismatch between train and eval modes is a common cause of instability or failure to learn in RL post-training.
Note
The Effective Sample Size (ESS) is a key diagnostic metric in GRPO. ESS measures the effective number of samples in the batch, computed as the inverse of the sum of the squared importance weights. A value of 1 indicates that all importance weights are equal (ideal case). If ESS drops or increases significantly, it usually indicates a problem with the model configuration, such as a train/eval mode mismatch or a large policy update.
- Keyword Arguments:
clip_epsilon (scalar, optional) – weight clipping threshold in the clipped PPO loss equation. default: 0.2
entropy_bonus (bool, optional) – if
True
, an entropy bonus will be added to the loss to favour exploratory policies.samples_mc_entropy (int, optional) – if the distribution retrieved from the policy operator does not have a closed form formula for the entropy, a Monte-Carlo estimate will be used.
samples_mc_entropy
will control how many samples will be used to compute this estimate. Defaults to1
.entropy_coeff (scalar, optional) – entropy multiplier when computing the total loss. Defaults to
0.01
.advantage_key (str, optional) – [Deprecated, use set_keys(advantage_key=advantage_key) instead] The input tensordict key where the advantage is expected to be written. Defaults to
"advantage"
.reduction (str, optional) – Specifies the reduction to apply to the output:
"none"
|"mean"
|"sum"
."none"
: no reduction will be applied,"mean"
: the sum of the output will be divided by the number of elements in the output,"sum"
: the output will be summed. Default:"mean"
.clip_value (bool or float, optional) – If a
float
is provided, it will be used to compute a clipped version of the value prediction with respect to the input tensordict value estimate and use it to calculate the value loss. The purpose of clipping is to limit the impact of extreme value predictions, helping stabilize training and preventing large updates. However, it will have no impact if the value estimate was done by the current version of the value estimator. If insteadTrue
is provided, theclip_epsilon
parameter will be used as the clipping threshold. If not provided orFalse
, no clipping will be performed. Defaults toFalse
.kl_to_ref_coeff (float, optional) – coefficient for the KL divergence to the reference policy. Defaults to
None
(no KL divergence).kl_to_inference_coeff (float, optional) – coefficient for the KL divergence to the inference policy. Defaults to
None
(no KL divergence).device (torch.device, optional) –
device of the buffers. Defaults to
None
.Note
Parameters and buffers from the policy / critic will not be cast to that device to ensure that the storages match the ones that are passed to other components, such as data collectors.
- add_module(name: str, module: Optional[Module]) None ¶
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters:
name (str) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- apply(fn: Callable[[Module], None]) Self ¶
Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.Typical use includes initializing the parameters of a model (see also torch.nn.init).
- Parameters:
fn (
Module
-> None) – function to be applied to each submodule- Returns:
self
- Return type:
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() Self ¶
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- buffers(recurse: bool = True) Iterator[Tensor] ¶
Return an iterator over module buffers.
- Parameters:
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor – module buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children() Iterator[Module] ¶
Return an iterator over immediate children modules.
- Yields:
Module – a child module
- compile(*args, **kwargs)¶
Compile this Module’s forward using
torch.compile()
.This Module’s __call__ method is compiled and all arguments are passed as-is to
torch.compile()
.See
torch.compile()
for details on the arguments for this function.
- convert_to_functional(module: TensorDictModule, module_name: str, expand_dim: int | None = None, create_target_params: bool = False, compare_against: list[Parameter] | None = None, **kwargs) None ¶
Converts a module to functional to be used in the loss.
- Parameters:
module (TensorDictModule or compatible) – a stateful tensordict module. Parameters from this module will be isolated in the <module_name>_params attribute and a stateless version of the module will be registered under the module_name attribute.
module_name (str) – name where the module will be found. The parameters of the module will be found under
loss_module.<module_name>_params
whereas the module will be found underloss_module.<module_name>
.expand_dim (int, optional) –
- if provided, the parameters of the module
will be expanded
N
times, whereN = expand_dim
along the first dimension. This option is to be used whenever a target network with more than one configuration is to be used.Note
If a
compare_against
list of values is provided, the resulting parameters will simply be a detached expansion of the original parameters. Ifcompare_against
is not provided, the value of the parameters will be resampled uniformly between the minimum and maximum value of the parameter content.- create_target_params (bool, optional): if
True
, a detached copy of the parameter will be available to feed a target network under the name
loss_module.<module_name>_target_params
. IfFalse
(default), this attribute will still be available but it will be a detached instance of the parameters, not a copy. In other words, any modification of the parameter value will directly be reflected in the target parameters.
compare_against (iterable of parameters, optional) – if provided, this list of parameters will be used as a comparison set for the parameters of the module. If the parameters are expanded (
expand_dim > 0
), the resulting parameters for the module will be a simple expansion of the original parameter. Otherwise, the resulting parameters will be a detached version of the original parameters. IfNone
, the resulting parameters will carry gradients as expected.
- cpu() Self ¶
Move all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- cuda(device: Optional[Union[device, int]] = None) Self ¶
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- default_keys¶
alias of
_AcceptedKeys
- double() Self ¶
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- eval() Self ¶
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See Locally disabling gradient computation for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
self
- Return type:
Module
- extra_repr() str ¶
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() Self ¶
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- forward(tensordict: TensorDictBase) GRPOLossOutput [source]¶
It is designed to read an input TensorDict and return another tensordict with loss keys named “loss*”.
Splitting the loss in its component can then be used by the trainer to log the various loss values throughout training. Other scalars present in the output tensordict will be logged too.
- Parameters:
tensordict – an input tensordict with the values required to compute the loss.
- Returns:
A new tensordict with no batch dimension containing various loss scalars which will be named “loss*”. It is essential that the losses are returned with this name as they will be read by the trainer before backpropagation.
- from_stateful_net(network_name: str, stateful_net: Module)¶
Populates the parameters of a model given a stateful version of the network.
See
get_stateful_net()
for details on how to gather a stateful version of the network.- Parameters:
network_name (str) – the network name to reset.
stateful_net (nn.Module) – the stateful network from which the params should be gathered.
- property functional¶
Whether the module is functional.
Unless it has been specifically designed not to be functional, all losses are functional.
- get_buffer(target: str) Tensor ¶
Return the buffer given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The buffer referenced by
target
- Return type:
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any ¶
Return any extra state to include in the module’s state_dict.
Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
Any extra state to store in the module’s state_dict
- Return type:
object
- get_parameter(target: str) Parameter ¶
Return the parameter given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The Parameter referenced by
target
- Return type:
torch.nn.Parameter
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_stateful_net(network_name: str, copy: bool | None = None)¶
Returns a stateful version of the network.
This can be used to initialize parameters.
Such networks will often not be callable out-of-the-box and will require a vmap call to be executable.
- Parameters:
network_name (str) – the network name to gather.
copy (bool, optional) –
if
True
, a deepcopy of the network is made. Defaults toTrue
.Note
if the module is not functional, no copy is made.
- get_submodule(target: str) Module ¶
Return the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
which has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns:
The submodule referenced by
target
- Return type:
- Raises:
AttributeError – If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module
.
- half() Self ¶
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- ipu(device: Optional[Union[device, int]] = None) Self ¶
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- static is_tdmodule_compatible(module)¶
Checks if a module is compatible with TensorDictModule API.
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)¶
Copy parameters and buffers from
state_dict
into this module and its descendants.If
strict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.Warning
If
assign
isTrue
the optimizer must be created after the call toload_state_dict
unlessget_swap_module_params_on_conversion()
isTrue
.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
assign (bool, optional) – When set to
False
, the properties of the tensors in the current module are preserved whereas setting it toTrue
preserves properties of the Tensors in the state dict. The only exception is therequires_grad
field ofParameter
for which the value from the module is preserved. Default:False
- Returns:
missing_keys
is a list of str containing any keys that are expectedby this module but missing from the provided
state_dict
.
unexpected_keys
is a list of str containing the keys that are notexpected by this module but present in the provided
state_dict
.
- Return type:
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- loss_critic(tensordict: TensorDictBase) Tensor ¶
Returns the critic loss multiplied by
critic_coef
, if it is notNone
.
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)¶
Value-function constructor.
If the non-default value function is wanted, it must be built using this method.
- Parameters:
value_type (ValueEstimators) – A
ValueEstimators
enum type indicating the value function to use. If none is provided, the default stored in thedefault_value_estimator
attribute will be used. The resulting value estimator class will be registered inself.value_type
, allowing future refinements.**hyperparams – hyperparameters to use for the value function. If not provided, the value indicated by
default_value_kwargs()
will be used.
Examples
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)
- modules() Iterator[Module] ¶
Return an iterator over all modules in the network.
- Yields:
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- mtia(device: Optional[Union[device, int]] = None) Self ¶
Move all model parameters and buffers to the MTIA.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on MTIA while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[tuple[str, torch.Tensor]] ¶
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters:
prefix (str) – prefix to prepend to all buffer names.
recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.
remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.
- Yields:
(str, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[tuple[str, 'Module']] ¶
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module) – Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True)¶
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters:
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
remove_duplicate – whether to remove the duplicated module instances in the result or not
- Yields:
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True) Iterator[tuple[str, torch.nn.parameter.Parameter]] ¶
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters:
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.
- Yields:
(str, Parameter) – Tuple containing the name and parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[Parameter] ¶
Return an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters:
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter – module parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor], Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]]) RemovableHandle ¶
Register a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_buffer(name: str, tensor: Optional[Tensor], persistent: bool = True) None ¶
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters:
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Union[Callable[[T, tuple[Any, ...], Any], Optional[Any]], Callable[[T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle ¶
Register a forward hook on the module.
The hook will be called every time after
forward()
has computed an output.If
with_kwargs
isFalse
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called. The hook should have the following signature:hook(module, args, output) -> None or modified output
If
with_kwargs
isTrue
, the forward hook will be passed thekwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:hook(module, args, kwargs, output) -> None or modified output
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If
True
, the providedhook
will be fired before all existingforward
hooks on thistorch.nn.Module
. Otherwise, the providedhook
will be fired after all existingforward
hooks on thistorch.nn.Module
. Note that globalforward
hooks registered withregister_module_forward_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If
True
, thehook
will be passed the kwargs given to the forward function. Default:False
always_call (bool) – If
True
thehook
will be run regardless of whether an exception is raised while calling the Module. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook: Union[Callable[[T, tuple[Any, ...]], Optional[Any]], Callable[[T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle ¶
Register a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked.If
with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:hook(module, args) -> None or modified input
If
with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingforward_pre
hooks on thistorch.nn.Module
. Otherwise, the providedhook
will be fired after all existingforward_pre
hooks on thistorch.nn.Module
. Note that globalforward_pre
hooks registered withregister_module_forward_pre_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If true, the
hook
will be passed the kwargs given to the forward function. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor], Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]], prepend: bool = False) RemovableHandle ¶
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
If none of the module inputs require gradients, the hook will fire when the gradients are computed with respect to module outputs.
If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward
hooks on thistorch.nn.Module
. Otherwise, the providedhook
will be fired after all existingbackward
hooks on thistorch.nn.Module
. Note that globalbackward
hooks registered withregister_module_full_backward_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]], prepend: bool = False) RemovableHandle ¶
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:
hook(module, grad_output) -> tuple[Tensor] or None
The
grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place ofgrad_output
in subsequent computations. Entries ingrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward_pre
hooks on thistorch.nn.Module
. Otherwise, the providedhook
will be fired after all existingbackward_pre
hooks on thistorch.nn.Module
. Note that globalbackward_pre
hooks registered withregister_module_full_backward_pre_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)¶
Register a post-hook to be run after module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearing out both missing and unexpected keys will avoid an error.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_pre_hook(hook)¶
Register a pre-hook to be run before module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
- register_module(name: str, module: Optional[Module]) None ¶
Alias for
add_module()
.
- register_parameter(name: str, param: Optional[Parameter]) None ¶
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters:
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- register_state_dict_post_hook(hook)¶
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None
The registered hooks can modify the
state_dict
inplace.
- register_state_dict_pre_hook(hook)¶
Register a pre-hook for the
state_dict()
method.- It should have the following signature::
hook(module, prefix, keep_vars) -> None
The registered hooks can be used to perform pre-processing before the
state_dict
call is made.
- requires_grad_(requires_grad: bool = True) Self ¶
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See Locally disabling gradient computation for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters:
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns:
self
- Return type:
Module
- reset_out_keys()¶
Resets the
out_keys
attribute to its orignal value.Returns: the same module, with its original
out_keys
values.Examples
>>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule, TensorDictSequential >>> import torch >>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"]) >>> mod.select_out_keys("d") >>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []) >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) >>> mod.reset_out_keys() >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
- reset_parameters_recursive()¶
Reset the parameters of the module.
- select_out_keys(*out_keys) TensorDictModuleBase ¶
Selects the keys that will be found in the output tensordict.
This is useful whenever one wants to get rid of intermediate keys in a complicated graph, or when the presence of these keys may trigger unexpected behaviours.
The original
out_keys
can still be accessed viamodule.out_keys_source
.- Parameters:
*out_keys (a sequence of strings or tuples of strings) – the out_keys that should be found in the output tensordict.
Returns: the same module, modified in-place with updated
out_keys
.The simplest usage is with
TensorDictModule
:Examples
>>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule, TensorDictSequential >>> import torch >>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"]) >>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []) >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) >>> mod.select_out_keys("d") >>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []) >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
This feature will also work with dispatched arguments: .. rubric:: Examples
>>> mod(torch.zeros(()), torch.ones(())) tensor(2.)
This change will occur in-place (ie the same module will be returned with an updated list of out_keys). It can be reverted using the
TensorDictModuleBase.reset_out_keys()
method.Examples
>>> mod.reset_out_keys() >>> mod(TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
This will work with other classes too, such as Sequential: .. rubric:: Examples
>>> from tensordict.nn import TensorDictSequential >>> seq = TensorDictSequential( ... TensorDictModule(lambda x: x+1, in_keys=["x"], out_keys=["y"]), ... TensorDictModule(lambda x: x+1, in_keys=["y"], out_keys=["z"]), ... ) >>> td = TensorDict({"x": torch.zeros(())}, []) >>> seq(td) TensorDict( fields={ x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), y: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) >>> seq.select_out_keys("z") >>> td = TensorDict({"x": torch.zeros(())}, []) >>> seq(td) TensorDict( fields={ x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
- set_extra_state(state: Any) None ¶
Set extra state contained in the loaded state_dict.
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters:
state (dict) – Extra state from the state_dict
- set_keys(**kwargs) None ¶
Set tensordict key names.
Examples
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> dqn_loss.set_keys(priority_key="td_error", action_value_key="action_value")
- set_submodule(target: str, module: Module, strict: bool = False) None ¶
Set the submodule given by
target
if it exists, otherwise throw an error.Note
If
strict
is set toFalse
(default), the method will replace an existing submodule or create a new submodule if the parent module exists. Ifstrict
is set toTrue
, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To override the
Conv2d
with a new submoduleLinear
, you could callset_submodule("net_b.net_c.conv", nn.Linear(1, 1))
wherestrict
could beTrue
orFalse
To add a new submodule
Conv2d
to the existingnet_b
module, you would callset_submodule("net_b.conv", nn.Conv2d(1, 1, 1))
.In the above if you set
strict=True
and callset_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True)
, an AttributeError will be raised becausenet_b
does not have a submodule namedconv
.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
module – The module to set the submodule to.
strict – If
False
, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue
, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn’t already exist.
- Raises:
ValueError – If the
target
string is empty or ifmodule
is not an instance ofnn.Module
.AttributeError – If at any point along the path resulting from the
target
string the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module
.
- state_dict(*args, destination=None, prefix='', keep_vars=False)¶
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns:
a dictionary containing a whole state of the module
- Return type:
dict
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)¶
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: Optional[Union[int, str, device]], recurse: bool = True) Self ¶
Move the parameters and buffers to the specified device without copying storage.
- Parameters:
device (
torch.device
) – The desired device of the parameters and buffers in this module.recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.
- Returns:
self
- Return type:
Module
- train(mode: bool = True) Self ¶
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- type(dst_type: Union[dtype, str]) Self ¶
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters:
dst_type (type or string) – the desired type
- Returns:
self
- Return type:
Module
- property value_estimator: ValueEstimatorBase¶
The value function blends in the reward and value estimate(s) from upcoming state(s)/state-action pair(s) into a target value estimate for the value network.
- property vmap_randomness¶
Vmap random mode.
The vmap randomness mode controls what
vmap()
should do when dealing with functions with a random outcome such asrandn()
andrand()
. If “error”, any random function will raise an exception indicating that vmap does not know how to handle the random call.If “different”, every element of the batch along which vmap is being called will behave differently. If “same”, vmaps will copy the same result across all elements.
vmap_randomness
defaults to “error” if no random module is detected, and to “different” in other cases. By default, only a limited number of modules are listed as random, but the list can be extended using theadd_random_module()
function.This property supports setting its value.
- xpu(device: Optional[Union[device, int]] = None) Self ¶
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- zero_grad(set_to_none: bool = True) None ¶
Reset gradients of all model parameters.
See similar function under
torch.optim.Optimizer
for more context.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.