torch.fake_quantize_per_channel_affine¶
- torch.fake_quantize_per_channel_affine(input, scale, zero_point, axis, quant_min, quant_max) Tensor¶
- Returns a new tensor with the data in - inputfake quantized per channel using- scale,- zero_point,- quant_minand- quant_max, across the channel specified by- axis.- Parameters
- input (Tensor) – the input value(s), in - torch.float32
- scale (Tensor) – quantization scale, per channel in - torch.float32
- zero_point (Tensor) – quantization zero_point, per channel in - torch.int32or- torch.halfor- torch.float32
- axis (int32) – channel axis 
- quant_min (int64) – lower bound of the quantized domain 
- quant_max (int64) – upper bound of the quantized domain 
 
- Returns
- A newly fake_quantized per channel - torch.float32tensor
- Return type
 - Example: - >>> x = torch.randn(2, 2, 2) >>> x tensor([[[-0.2525, -0.0466], [ 0.3491, -0.2168]], [[-0.5906, 1.6258], [ 0.6444, -0.0542]]]) >>> scales = (torch.randn(2) + 1) * 0.05 >>> scales tensor([0.0475, 0.0486]) >>> zero_points = torch.zeros(2).to(torch.int32) >>> zero_points tensor([0, 0]) >>> torch.fake_quantize_per_channel_affine(x, scales, zero_points, 1, 0, 255) tensor([[[0.0000, 0.0000], [0.3405, 0.0000]], [[0.0000, 1.6134], [0.6323, 0.0000]]])