ChromaSpectrogram¶
- class torchaudio.prototype.transforms.ChromaSpectrogram(sample_rate: int, n_fft: int, *, win_length: ~typing.Optional[int] = None, hop_length: ~typing.Optional[int] = None, pad: int = 0, window_fn: ~typing.Callable[[...], ~torch.Tensor] = <built-in method hann_window of type object>, power: float = 2.0, normalized: bool = False, wkwargs: ~typing.Optional[dict] = None, center: bool = True, pad_mode: str = 'reflect', n_chroma: int = 12, tuning: float = 0.0, ctroct: float = 5.0, octwidth: ~typing.Optional[float] = 2.0, norm: int = 2, base_c: bool = True)[source]¶
DEPRECATED
Warning
This class is deprecated from version 2.8. It will be removed in the 2.9 release. This deprecation is part of a large refactoring effort to transition TorchAudio into a maintenance phase. Please see https://github.com/pytorch/audio/issues/3902 for more information.
Generates chromagram for audio signal.
Composes
torchaudio.transforms.Spectrogram()
and andtorchaudio.prototype.transforms.ChromaScale()
.- Args:
sample_rate (int): Sample rate of audio signal. n_fft (int, optional): Size of FFT, creates
n_fft // 2 + 1
bins. win_length (int or None, optional): Window size. (Default:n_fft
) hop_length (int or None, optional): Length of hop between STFT windows. (Default:win_length // 2
) pad (int, optional): Two sided padding of signal. (Default:0
) window_fn (Callable[…, torch.Tensor], optional): A function to create a window tensorthat is applied/multiplied to each frame/window. (Default:
torch.hann_window
)- power (float, optional): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc. (Default:
2
)
normalized (bool, optional): Whether to normalize by magnitude after stft. (Default:
False
) wkwargs (Dict[…, …] or None, optional): Arguments for window function. (Default:None
) center (bool, optional): whether to padwaveform
on both sides sothat the \(t\)-th frame is centered at time \(t \times \text{hop\_length}\). (Default:
True
)- pad_mode (string, optional): controls the padding method used when
center
isTrue
. (Default:"reflect"
)
n_chroma (int, optional): Number of chroma. (Default:
12
) tuning (float, optional): Tuning deviation from A440 in fractions of a chroma bin. (Default: 0.0) ctroct (float, optional): Center of Gaussian dominance window to weight filters by, in octaves. (Default: 5.0) octwidth (float or None, optional): Width of Gaussian dominance window to weight filters by, in octaves.If
None
, then disable weighting altogether. (Default: 2.0)norm (int, optional): order of norm to normalize filter bank by. (Default: 2) base_c (bool, optional): If True, then start filter bank at C. Otherwise, start at A. (Default: True)
- Example
>>> waveform, sample_rate = torchaudio.load("test.wav", normalize=True) >>> transform = transforms.ChromaSpectrogram(sample_rate=sample_rate, n_fft=400) >>> chromagram = transform(waveform) # (channel, n_chroma, time)