Shortcuts

BarkScale

class torchaudio.prototype.transforms.BarkScale(n_barks: int = 128, sample_rate: int = 16000, f_min: float = 0.0, f_max: Optional[float] = None, n_stft: int = 201, bark_scale: str = 'traunmuller')[source]

DEPRECATED

Warning

This class is deprecated from version 2.8. It will be removed in the 2.9 release. This deprecation is part of a large refactoring effort to transition TorchAudio into a maintenance phase. Please see https://github.com/pytorch/audio/issues/3902 for more information.

Turn a normal STFT into a bark frequency STFT with triangular filter banks.

This feature supports the following devices: CPU, CUDA This API supports the following properties: Autograd, TorchScript
Args:

n_barks (int, optional): Number of bark filterbanks. (Default: 128) sample_rate (int, optional): Sample rate of audio signal. (Default: 16000) f_min (float, optional): Minimum frequency. (Default: 0.) f_max (float or None, optional): Maximum frequency. (Default: sample_rate // 2) n_stft (int, optional): Number of bins in STFT. See n_fft in Spectrogram. (Default: 201) norm (str or None, optional): If "slaney", divide the triangular bark weights by the width of the bark band

(area normalization). (Default: None)

bark_scale (str, optional): Scale to use: traunmuller, schroeder or wang. (Default: traunmuller)

Example
>>> waveform, sample_rate = torchaudio.load("test.wav", normalize=True)
>>> spectrogram_transform = transforms.Spectrogram(n_fft=1024)
>>> spectrogram = spectrogram_transform(waveform)
>>> barkscale_transform = transforms.BarkScale(sample_rate=sample_rate, n_stft=1024 // 2 + 1)
>>> barkscale_spectrogram = barkscale_transform(spectrogram)
See also:

torchaudio.prototype.functional.barkscale_fbanks() - The function used to generate the filter banks.

forward(specgram: Tensor) Tensor[source]
Parameters

specgram (torch.Tensor) – A spectrogram STFT of dimension (…, freq, time).

Returns

Bark frequency spectrogram of size (…, n_barks, time).

Return type

torch.Tensor

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources