Source code for torchvision.transforms.v2.functional._meta
from typing import Optional
import PIL.Image
import torch
from torchvision import tv_tensors
from torchvision.transforms import _functional_pil as _FP
from torchvision.tv_tensors import BoundingBoxFormat
from torchvision.utils import _log_api_usage_once
from ._utils import _get_kernel, _register_kernel_internal, is_pure_tensor
def get_dimensions(inpt: torch.Tensor) -> list[int]:
if torch.jit.is_scripting():
return get_dimensions_image(inpt)
_log_api_usage_once(get_dimensions)
kernel = _get_kernel(get_dimensions, type(inpt))
return kernel(inpt)
@_register_kernel_internal(get_dimensions, torch.Tensor)
@_register_kernel_internal(get_dimensions, tv_tensors.Image, tv_tensor_wrapper=False)
def get_dimensions_image(image: torch.Tensor) -> list[int]:
chw = list(image.shape[-3:])
ndims = len(chw)
if ndims == 3:
return chw
elif ndims == 2:
chw.insert(0, 1)
return chw
else:
raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}")
_get_dimensions_image_pil = _register_kernel_internal(get_dimensions, PIL.Image.Image)(_FP.get_dimensions)
@_register_kernel_internal(get_dimensions, tv_tensors.Video, tv_tensor_wrapper=False)
def get_dimensions_video(video: torch.Tensor) -> list[int]:
return get_dimensions_image(video)
def get_num_channels(inpt: torch.Tensor) -> int:
if torch.jit.is_scripting():
return get_num_channels_image(inpt)
_log_api_usage_once(get_num_channels)
kernel = _get_kernel(get_num_channels, type(inpt))
return kernel(inpt)
@_register_kernel_internal(get_num_channels, torch.Tensor)
@_register_kernel_internal(get_num_channels, tv_tensors.Image, tv_tensor_wrapper=False)
def get_num_channels_image(image: torch.Tensor) -> int:
chw = image.shape[-3:]
ndims = len(chw)
if ndims == 3:
return chw[0]
elif ndims == 2:
return 1
else:
raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}")
_get_num_channels_image_pil = _register_kernel_internal(get_num_channels, PIL.Image.Image)(_FP.get_image_num_channels)
@_register_kernel_internal(get_num_channels, tv_tensors.Video, tv_tensor_wrapper=False)
def get_num_channels_video(video: torch.Tensor) -> int:
return get_num_channels_image(video)
# We changed the names to ensure it can be used not only for images but also videos. Thus, we just alias it without
# deprecating the old names.
get_image_num_channels = get_num_channels
def get_size(inpt: torch.Tensor) -> list[int]:
if torch.jit.is_scripting():
return get_size_image(inpt)
_log_api_usage_once(get_size)
kernel = _get_kernel(get_size, type(inpt))
return kernel(inpt)
@_register_kernel_internal(get_size, torch.Tensor)
@_register_kernel_internal(get_size, tv_tensors.Image, tv_tensor_wrapper=False)
def get_size_image(image: torch.Tensor) -> list[int]:
hw = list(image.shape[-2:])
ndims = len(hw)
if ndims == 2:
return hw
else:
raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}")
@_register_kernel_internal(get_size, PIL.Image.Image)
def _get_size_image_pil(image: PIL.Image.Image) -> list[int]:
width, height = _FP.get_image_size(image)
return [height, width]
@_register_kernel_internal(get_size, tv_tensors.Video, tv_tensor_wrapper=False)
def get_size_video(video: torch.Tensor) -> list[int]:
return get_size_image(video)
@_register_kernel_internal(get_size, tv_tensors.Mask, tv_tensor_wrapper=False)
def get_size_mask(mask: torch.Tensor) -> list[int]:
return get_size_image(mask)
@_register_kernel_internal(get_size, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def get_size_bounding_boxes(bounding_box: tv_tensors.BoundingBoxes) -> list[int]:
return list(bounding_box.canvas_size)
@_register_kernel_internal(get_size, tv_tensors.KeyPoints, tv_tensor_wrapper=False)
def get_size_keypoints(keypoints: tv_tensors.KeyPoints) -> list[int]:
return list(keypoints.canvas_size)
def get_num_frames(inpt: torch.Tensor) -> int:
if torch.jit.is_scripting():
return get_num_frames_video(inpt)
_log_api_usage_once(get_num_frames)
kernel = _get_kernel(get_num_frames, type(inpt))
return kernel(inpt)
@_register_kernel_internal(get_num_frames, torch.Tensor)
@_register_kernel_internal(get_num_frames, tv_tensors.Video, tv_tensor_wrapper=False)
def get_num_frames_video(video: torch.Tensor) -> int:
return video.shape[-4]
def _xywh_to_xyxy(xywh: torch.Tensor, inplace: bool) -> torch.Tensor:
xyxy = xywh if inplace else xywh.clone()
xyxy[..., 2:] += xyxy[..., :2]
return xyxy
def _xyxy_to_xywh(xyxy: torch.Tensor, inplace: bool) -> torch.Tensor:
xywh = xyxy if inplace else xyxy.clone()
xywh[..., 2:] -= xywh[..., :2]
return xywh
def _cxcywh_to_xyxy(cxcywh: torch.Tensor, inplace: bool) -> torch.Tensor:
if not inplace:
cxcywh = cxcywh.clone()
# Trick to do fast division by 2 and ceil, without casting. It produces the same result as
# `torchvision.ops._box_convert._box_cxcywh_to_xyxy`.
half_wh = cxcywh[..., 2:].div(-2, rounding_mode=None if cxcywh.is_floating_point() else "floor").abs_()
# (cx - width / 2) = x1, same for y1
cxcywh[..., :2].sub_(half_wh)
# (x1 + width) = x2, same for y2
cxcywh[..., 2:].add_(cxcywh[..., :2])
return cxcywh
def _xyxy_to_cxcywh(xyxy: torch.Tensor, inplace: bool) -> torch.Tensor:
if not inplace:
xyxy = xyxy.clone()
# (x2 - x1) = width, same for height
xyxy[..., 2:].sub_(xyxy[..., :2])
# (x1 * 2 + width) / 2 = x1 + width / 2 = x1 + (x2-x1)/2 = (x1 + x2)/2 = cx, same for cy
xyxy[..., :2].mul_(2).add_(xyxy[..., 2:]).div_(2, rounding_mode=None if xyxy.is_floating_point() else "floor")
return xyxy
def _xyxy_to_keypoints(bounding_boxes: torch.Tensor) -> torch.Tensor:
return bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]]
def _xyxyxyxy_to_keypoints(bounding_boxes: torch.Tensor) -> torch.Tensor:
return bounding_boxes[:, [[0, 1], [2, 3], [4, 5], [6, 7]]]
def _cxcywhr_to_xywhr(cxcywhr: torch.Tensor, inplace: bool) -> torch.Tensor:
if not inplace:
cxcywhr = cxcywhr.clone()
dtype = cxcywhr.dtype
need_cast = not cxcywhr.is_floating_point()
if need_cast:
cxcywhr = cxcywhr.float()
half_wh = cxcywhr[..., 2:-1].div(-2, rounding_mode=None if cxcywhr.is_floating_point() else "floor").abs_()
r_rad = cxcywhr[..., 4].mul(torch.pi).div(180.0)
cos, sin = r_rad.cos(), r_rad.sin()
# (cx - width / 2 * cos - height / 2 * sin) = x1
cxcywhr[..., 0].sub_(half_wh[..., 0].mul(cos)).sub_(half_wh[..., 1].mul(sin))
# (cy + width / 2 * sin - height / 2 * cos) = y1
cxcywhr[..., 1].add_(half_wh[..., 0].mul(sin)).sub_(half_wh[..., 1].mul(cos))
if need_cast:
cxcywhr.round_()
cxcywhr = cxcywhr.to(dtype)
return cxcywhr
def _xywhr_to_cxcywhr(xywhr: torch.Tensor, inplace: bool) -> torch.Tensor:
if not inplace:
xywhr = xywhr.clone()
dtype = xywhr.dtype
need_cast = not xywhr.is_floating_point()
if need_cast:
xywhr = xywhr.float()
half_wh = xywhr[..., 2:-1].div(-2, rounding_mode=None if xywhr.is_floating_point() else "floor").abs_()
r_rad = xywhr[..., 4].mul(torch.pi).div(180.0)
cos, sin = r_rad.cos(), r_rad.sin()
# (x1 + width / 2 * cos + height / 2 * sin) = cx
xywhr[..., 0].add_(half_wh[..., 0].mul(cos)).add_(half_wh[..., 1].mul(sin))
# (y1 - width / 2 * sin + height / 2 * cos) = cy
xywhr[..., 1].sub_(half_wh[..., 0].mul(sin)).add_(half_wh[..., 1].mul(cos))
if need_cast:
xywhr.round_()
xywhr = xywhr.to(dtype)
return xywhr
def _xywhr_to_xyxyxyxy(xywhr: torch.Tensor, inplace: bool) -> torch.Tensor:
# NOTE: This function cannot modify the input tensor inplace as it requires a dimension change.
if not inplace:
xywhr = xywhr.clone()
dtype = xywhr.dtype
need_cast = not xywhr.is_floating_point()
if need_cast:
xywhr = xywhr.float()
wh = xywhr[..., 2:-1]
r_rad = xywhr[..., 4].mul(torch.pi).div(180.0)
cos, sin = r_rad.cos(), r_rad.sin()
xywhr = xywhr[..., :2].tile((1, 4))
# x1 + w * cos = x2
xywhr[..., 2].add_(wh[..., 0].mul(cos))
# y1 - w * sin = y2
xywhr[..., 3].sub_(wh[..., 0].mul(sin))
# x1 + w * cos + h * sin = x3
xywhr[..., 4].add_(wh[..., 0].mul(cos).add(wh[..., 1].mul(sin)))
# y1 - w * sin + h * cos = y3
xywhr[..., 5].sub_(wh[..., 0].mul(sin).sub(wh[..., 1].mul(cos)))
# x1 + h * sin = x4
xywhr[..., 6].add_(wh[..., 1].mul(sin))
# y1 + h * cos = y4
xywhr[..., 7].add_(wh[..., 1].mul(cos))
if need_cast:
xywhr.round_()
xywhr = xywhr.to(dtype)
return xywhr
def _xyxyxyxy_to_xywhr(xyxyxyxy: torch.Tensor, inplace: bool) -> torch.Tensor:
# NOTE: This function cannot modify the input tensor inplace as it requires a dimension change.
if not inplace:
xyxyxyxy = xyxyxyxy.clone()
dtype = xyxyxyxy.dtype
need_cast = not xyxyxyxy.is_floating_point()
if need_cast:
xyxyxyxy = xyxyxyxy.float()
r_rad = torch.atan2(xyxyxyxy[..., 1].sub(xyxyxyxy[..., 3]), xyxyxyxy[..., 2].sub(xyxyxyxy[..., 0]))
# x1, y1, (x2 - x1), (y2 - y1), (x3 - x2), (y3 - y2) x4, y4
xyxyxyxy[..., 4:6].sub_(xyxyxyxy[..., 2:4])
xyxyxyxy[..., 2:4].sub_(xyxyxyxy[..., :2])
# sqrt((x2 - x1) ** 2 + (y1 - y2) ** 2) = w
xyxyxyxy[..., 2] = xyxyxyxy[..., 2].pow(2).add(xyxyxyxy[..., 3].pow(2)).sqrt()
# sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2) = h
xyxyxyxy[..., 3] = xyxyxyxy[..., 4].pow(2).add(xyxyxyxy[..., 5].pow(2)).sqrt()
xyxyxyxy[..., 4] = r_rad.div_(torch.pi).mul_(180.0)
if need_cast:
xyxyxyxy.round_()
xyxyxyxy = xyxyxyxy.to(dtype)
return xyxyxyxy[..., :5]
def _convert_bounding_box_format(
bounding_boxes: torch.Tensor, old_format: BoundingBoxFormat, new_format: BoundingBoxFormat, inplace: bool = False
) -> torch.Tensor:
if new_format == old_format:
return bounding_boxes
if tv_tensors.is_rotated_bounding_format(old_format) ^ tv_tensors.is_rotated_bounding_format(new_format):
raise ValueError("Cannot convert between rotated and unrotated bounding boxes.")
# TODO: Add _xywh_to_cxcywh and _cxcywh_to_xywh to improve performance
if old_format == BoundingBoxFormat.XYWH:
bounding_boxes = _xywh_to_xyxy(bounding_boxes, inplace)
elif old_format == BoundingBoxFormat.CXCYWH:
bounding_boxes = _cxcywh_to_xyxy(bounding_boxes, inplace)
elif old_format == BoundingBoxFormat.CXCYWHR:
bounding_boxes = _cxcywhr_to_xywhr(bounding_boxes, inplace)
elif old_format == BoundingBoxFormat.XYXYXYXY:
bounding_boxes = _xyxyxyxy_to_xywhr(bounding_boxes, inplace)
if new_format == BoundingBoxFormat.XYWH:
bounding_boxes = _xyxy_to_xywh(bounding_boxes, inplace)
elif new_format == BoundingBoxFormat.CXCYWH:
bounding_boxes = _xyxy_to_cxcywh(bounding_boxes, inplace)
elif new_format == BoundingBoxFormat.CXCYWHR:
bounding_boxes = _xywhr_to_cxcywhr(bounding_boxes, inplace)
elif new_format == BoundingBoxFormat.XYXYXYXY:
bounding_boxes = _xywhr_to_xyxyxyxy(bounding_boxes, inplace)
return bounding_boxes
[docs]def convert_bounding_box_format(
inpt: torch.Tensor,
old_format: Optional[BoundingBoxFormat] = None,
new_format: Optional[BoundingBoxFormat] = None,
inplace: bool = False,
) -> torch.Tensor:
"""See :func:`~torchvision.transforms.v2.ConvertBoundingBoxFormat` for details."""
# This being a kernel / functional hybrid, we need an option to pass `old_format` explicitly for pure tensor
# inputs as well as extract it from `tv_tensors.BoundingBoxes` inputs. However, putting a default value on
# `old_format` means we also need to put one on `new_format` to have syntactically correct Python. Here we mimic the
# default error that would be thrown if `new_format` had no default value.
if new_format is None:
raise TypeError("convert_bounding_box_format() missing 1 required argument: 'new_format'")
if not torch.jit.is_scripting():
_log_api_usage_once(convert_bounding_box_format)
if isinstance(old_format, str):
old_format = BoundingBoxFormat[old_format.upper()]
if isinstance(new_format, str):
new_format = BoundingBoxFormat[new_format.upper()]
if torch.jit.is_scripting() or is_pure_tensor(inpt):
if old_format is None:
raise ValueError("For pure tensor inputs, `old_format` has to be passed.")
return _convert_bounding_box_format(inpt, old_format=old_format, new_format=new_format, inplace=inplace)
elif isinstance(inpt, tv_tensors.BoundingBoxes):
if old_format is not None:
raise ValueError("For bounding box tv_tensor inputs, `old_format` must not be passed.")
output = _convert_bounding_box_format(
inpt.as_subclass(torch.Tensor), old_format=inpt.format, new_format=new_format, inplace=inplace
)
return tv_tensors.wrap(output, like=inpt, format=new_format)
else:
raise TypeError(
f"Input can either be a plain tensor or a bounding box tv_tensor, but got {type(inpt)} instead."
)
def _clamp_bounding_boxes(
bounding_boxes: torch.Tensor, format: BoundingBoxFormat, canvas_size: tuple[int, int]
) -> torch.Tensor:
# TODO: Investigate if it makes sense from a performance perspective to have an implementation for every
# BoundingBoxFormat instead of converting back and forth
in_dtype = bounding_boxes.dtype
bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
xyxy_boxes = convert_bounding_box_format(
bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY, inplace=True
)
xyxy_boxes[..., 0::2].clamp_(min=0, max=canvas_size[1])
xyxy_boxes[..., 1::2].clamp_(min=0, max=canvas_size[0])
out_boxes = convert_bounding_box_format(
xyxy_boxes, old_format=BoundingBoxFormat.XYXY, new_format=format, inplace=True
)
return out_boxes.to(in_dtype)
def _order_bounding_boxes_points(
bounding_boxes: torch.Tensor, indices: Optional[torch.Tensor] = None
) -> tuple[torch.Tensor, torch.Tensor]:
"""Re-order points in bounding boxes based on specific criteria or provided indices.
This function reorders the points of bounding boxes either according to provided indices or
by a default ordering strategy. In the default strategy, (x1, y1) corresponds to the point
with the lowest x value. If multiple points have the same lowest x value, the point with the
lowest y value is chosen.
Args:
bounding_boxes (torch.Tensor): A tensor containing bounding box coordinates in format [x1, y1, x2, y2, x3, y3, x4, y4].
indices (torch.Tensor | None): Optional tensor containing indices for reordering. If None, default ordering is applied.
Returns:
tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- indices: The indices used for reordering
- reordered_boxes: The bounding boxes with reordered points
"""
if indices is None:
output_xyxyxyxy = bounding_boxes.reshape(-1, 8)
x, y = output_xyxyxyxy[..., 0::2], output_xyxyxyxy[..., 1::2]
y_max = torch.max(y, dim=1, keepdim=True)[0]
_, x1 = ((y_max - y) / y_max + (x + 1) * 100).min(dim=1)
indices = torch.ones_like(output_xyxyxyxy)
indices[..., 0] = x1.mul(2)
indices.cumsum_(1).remainder_(8)
return indices, bounding_boxes.gather(1, indices.to(torch.int64))
def _area(box: torch.Tensor) -> torch.Tensor:
x1, y1, x2, y2, x3, y3, x4, y4 = box.reshape(-1, 8).unbind(-1)
w = torch.sqrt((y2 - y1) ** 2 + (x2 - x1) ** 2)
h = torch.sqrt((y3 - y2) ** 2 + (x3 - x2) ** 2)
return w * h
def _clamp_along_y_axis(
bounding_boxes: torch.Tensor,
) -> torch.Tensor:
"""
Adjusts bounding boxes along the y-axis based on specific conditions.
This function modifies the bounding boxes by evaluating different cases
and applying the appropriate transformation to ensure the bounding boxes
are clamped correctly along the y-axis.
Args:
bounding_boxes (torch.Tensor): A tensor containing bounding box coordinates.
Returns:
torch.Tensor: The adjusted bounding boxes.
"""
original_dtype = bounding_boxes.dtype
original_shape = bounding_boxes.shape
x1, y1, x2, y2, x3, y3, x4, y4 = bounding_boxes.reshape(-1, 8).unbind(-1)
a = (y2 - y1) / (x2 - x1)
b1 = y1 - a * x1
b2 = y2 + x2 / a
b3 = y3 - a * x3
b4 = y4 + x4 / a
b23 = (b2 - b3) / 2 * a / (1 + a**2)
z = torch.zeros_like(b1)
case_a = torch.cat([x.unsqueeze(1) for x in [z, b1, x2, y2, x3, y3, x3 - x2, y3 + b1 - y2]], dim=1)
case_b = torch.cat([x.unsqueeze(1) for x in [z, b4, x2 - x1, y2 - y1 + b4, x3, y3, x4, y4]], dim=1)
case_c = torch.cat(
[x.unsqueeze(1) for x in [z, (b2 + b3) / 2, b23, -b23 / a + b2, x3, y3, b23, b23 * a + b3]], dim=1
)
case_d = torch.zeros_like(case_c)
case_e = torch.cat([x.unsqueeze(1) for x in [x1.clamp(0), y1, x2.clamp(0), y2, x3, y3, x4, y4]], dim=1)
cond_a = (x1 < 0).logical_and(x2 >= 0).logical_and(x3 >= 0).logical_and(x4 >= 0)
cond_a = cond_a.logical_and(_area(case_a) > _area(case_b))
cond_a = cond_a.logical_or((x1 < 0).logical_and(x2 >= 0).logical_and(x3 >= 0).logical_and(x4 <= 0))
cond_b = (x1 < 0).logical_and(x2 >= 0).logical_and(x3 >= 0).logical_and(x4 >= 0)
cond_b = cond_b.logical_and(_area(case_a) <= _area(case_b))
cond_b = cond_b.logical_or((x1 < 0).logical_and(x2 <= 0).logical_and(x3 >= 0).logical_and(x4 >= 0))
cond_c = (x1 < 0).logical_and(x2 <= 0).logical_and(x3 >= 0).logical_and(x4 <= 0)
cond_d = (x1 < 0).logical_and(x2 <= 0).logical_and(x3 <= 0).logical_and(x4 <= 0)
cond_e = x1.isclose(x2)
for cond, case in zip(
[cond_a, cond_b, cond_c, cond_d, cond_e],
[case_a, case_b, case_c, case_d, case_e],
):
bounding_boxes = torch.where(cond.unsqueeze(1).repeat(1, 8), case.reshape(-1, 8), bounding_boxes)
return bounding_boxes.to(original_dtype).reshape(original_shape)
def _clamp_rotated_bounding_boxes(
bounding_boxes: torch.Tensor, format: BoundingBoxFormat, canvas_size: tuple[int, int]
) -> torch.Tensor:
"""
Clamp rotated bounding boxes to ensure they stay within the canvas boundaries.
This function handles rotated bounding boxes by:
1. Converting them to XYXYXYXY format (8 coordinates representing 4 corners).
2. Re-ordering the points in the bounding boxes to ensure (x1, y1) corresponds to the point with the lowest x value
2. Translates the points (x1, y1), (x2, y2) and (x3, y3)
to ensure the bounding box does not go out beyond the left boundary of the canvas.
3. Rotate the bounding box four times and apply the same transformation to each vertex to ensure
the box does not go beyond the top, right, and bottom boundaries.
3. Converting back to the original format and re-order the points as in the original input.
Args:
bounding_boxes (torch.Tensor): Tensor containing rotated bounding box coordinates
format (BoundingBoxFormat): The format of the input bounding boxes
canvas_size (tuple[int, int]): The size of the canvas as (height, width)
Returns:
torch.Tensor: Clamped bounding boxes in the original format and shape
"""
original_shape = bounding_boxes.shape
dtype = bounding_boxes.dtype
acceptable_dtypes = [torch.float64] # Ensure consistency between CPU and GPU.
need_cast = dtype not in acceptable_dtypes
bounding_boxes = bounding_boxes.to(torch.float64) if need_cast else bounding_boxes.clone()
out_boxes = (
convert_bounding_box_format(
bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXYXYXY, inplace=True
)
).reshape(-1, 8)
for _ in range(4): # Iterate over the 4 vertices.
indices, out_boxes = _order_bounding_boxes_points(out_boxes)
out_boxes = _clamp_along_y_axis(out_boxes)
_, out_boxes = _order_bounding_boxes_points(out_boxes, indices)
# rotate 90 degrees counter clock wise
out_boxes[:, ::2], out_boxes[:, 1::2] = (
out_boxes[:, 1::2].clone(),
canvas_size[1] - out_boxes[:, ::2].clone(),
)
canvas_size = (canvas_size[1], canvas_size[0])
out_boxes = convert_bounding_box_format(
out_boxes, old_format=tv_tensors.BoundingBoxFormat.XYXYXYXY, new_format=format, inplace=True
).reshape(original_shape)
if need_cast:
if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
out_boxes.round_()
out_boxes = out_boxes.to(dtype)
return out_boxes
[docs]def clamp_bounding_boxes(
inpt: torch.Tensor,
format: Optional[BoundingBoxFormat] = None,
canvas_size: Optional[tuple[int, int]] = None,
) -> torch.Tensor:
"""See :func:`~torchvision.transforms.v2.ClampBoundingBoxes` for details."""
if not torch.jit.is_scripting():
_log_api_usage_once(clamp_bounding_boxes)
if torch.jit.is_scripting() or is_pure_tensor(inpt):
if format is None or canvas_size is None:
raise ValueError("For pure tensor inputs, `format` and `canvas_size` have to be passed.")
if tv_tensors.is_rotated_bounding_format(format):
return _clamp_rotated_bounding_boxes(inpt, format=format, canvas_size=canvas_size)
else:
return _clamp_bounding_boxes(inpt, format=format, canvas_size=canvas_size)
elif isinstance(inpt, tv_tensors.BoundingBoxes):
if format is not None or canvas_size is not None:
raise ValueError("For bounding box tv_tensor inputs, `format` and `canvas_size` must not be passed.")
if tv_tensors.is_rotated_bounding_format(inpt.format):
output = _clamp_rotated_bounding_boxes(
inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
)
else:
output = _clamp_bounding_boxes(
inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
)
return tv_tensors.wrap(output, like=inpt)
else:
raise TypeError(
f"Input can either be a plain tensor or a bounding box tv_tensor, but got {type(inpt)} instead."
)
def _clamp_keypoints(keypoints: torch.Tensor, canvas_size: tuple[int, int]) -> torch.Tensor:
dtype = keypoints.dtype
keypoints = keypoints.clone() if keypoints.is_floating_point() else keypoints.float()
# Note that max is canvas_size[i] - 1 and not can canvas_size[i] like for
# bounding boxes.
keypoints[..., 0].clamp_(min=0, max=canvas_size[1] - 1)
keypoints[..., 1].clamp_(min=0, max=canvas_size[0] - 1)
return keypoints.to(dtype=dtype)
[docs]def clamp_keypoints(
inpt: torch.Tensor,
canvas_size: Optional[tuple[int, int]] = None,
) -> torch.Tensor:
"""See :func:`~torchvision.transforms.v2.ClampKeyPoints` for details."""
if not torch.jit.is_scripting():
_log_api_usage_once(clamp_keypoints)
if torch.jit.is_scripting() or is_pure_tensor(inpt):
if canvas_size is None:
raise ValueError("For pure tensor inputs, `canvas_size` has to be passed.")
return _clamp_keypoints(inpt, canvas_size=canvas_size)
elif isinstance(inpt, tv_tensors.KeyPoints):
if canvas_size is not None:
raise ValueError("For keypoints tv_tensor inputs, `canvas_size` must not be passed.")
output = _clamp_keypoints(inpt.as_subclass(torch.Tensor), canvas_size=inpt.canvas_size)
return tv_tensors.wrap(output, like=inpt)
else:
raise TypeError(f"Input can either be a plain tensor or a keypoints tv_tensor, but got {type(inpt)} instead.")