Shortcuts

Source code for torchvision.transforms.v2._utils

from __future__ import annotations

import collections.abc
import numbers
from collections.abc import Sequence
from contextlib import suppress

from typing import Any, Callable, Literal

import PIL.Image
import torch

from torchvision import tv_tensors

from torchvision._utils import sequence_to_str

from torchvision.transforms.transforms import _check_sequence_input, _setup_angle, _setup_size  # noqa: F401
from torchvision.transforms.v2.functional import get_dimensions, get_size, is_pure_tensor
from torchvision.transforms.v2.functional._utils import _FillType, _FillTypeJIT


def _setup_number_or_seq(arg: int | float | Sequence[int | float], name: str) -> Sequence[float]:
    if not isinstance(arg, (int, float, Sequence)):
        raise TypeError(f"{name} should be a number or a sequence of numbers. Got {type(arg)}")
    if isinstance(arg, Sequence) and len(arg) not in (1, 2):
        raise ValueError(f"If {name} is a sequence its length should be 1 or 2. Got {len(arg)}")
    if isinstance(arg, Sequence):
        for element in arg:
            if not isinstance(element, (int, float)):
                raise ValueError(f"{name} should be a sequence of numbers. Got {type(element)}")

    if isinstance(arg, (int, float)):
        arg = [float(arg), float(arg)]
    elif isinstance(arg, Sequence):
        if len(arg) == 1:
            arg = [float(arg[0]), float(arg[0])]
        else:
            arg = [float(arg[0]), float(arg[1])]
    return arg


def _check_fill_arg(fill: _FillType | dict[type | str, _FillType]) -> None:
    if isinstance(fill, dict):
        for value in fill.values():
            _check_fill_arg(value)
    else:
        if fill is not None and not isinstance(fill, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate fill arg, only Numbers, tuples, lists and dicts are allowed.")


def _convert_fill_arg(fill: _FillType) -> _FillTypeJIT:
    # Fill = 0 is not equivalent to None, https://github.com/pytorch/vision/issues/6517
    # So, we can't reassign fill to 0
    # if fill is None:
    #     fill = 0
    if fill is None:
        return fill

    if not isinstance(fill, (int, float)):
        fill = [float(v) for v in list(fill)]
    return fill  # type: ignore[return-value]


def _setup_fill_arg(fill: _FillType | dict[type | str, _FillType]) -> dict[type | str, _FillTypeJIT]:
    _check_fill_arg(fill)

    if isinstance(fill, dict):
        for k, v in fill.items():
            fill[k] = _convert_fill_arg(v)
        return fill  # type: ignore[return-value]
    else:
        return {"others": _convert_fill_arg(fill)}


def _get_fill(fill_dict, inpt_type):
    if inpt_type in fill_dict:
        return fill_dict[inpt_type]
    elif "others" in fill_dict:
        return fill_dict["others"]
    else:
        RuntimeError("This should never happen, please open an issue on the torchvision repo if you hit this.")


def _check_padding_arg(padding: int | Sequence[int]) -> None:

    err_msg = f"Padding must be an int or a 1, 2, or 4 element of tuple or list, got {padding}."
    if isinstance(padding, (tuple, list)):
        if len(padding) not in [1, 2, 4] or not all(isinstance(p, int) for p in padding):
            raise ValueError(err_msg)
    elif not isinstance(padding, int):
        raise ValueError(err_msg)


# TODO: let's use torchvision._utils.StrEnum to have the best of both worlds (strings and enums)
# https://github.com/pytorch/vision/issues/6250
def _check_padding_mode_arg(padding_mode: Literal["constant", "edge", "reflect", "symmetric"]) -> None:
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")


def _find_labels_default_heuristic(inputs: Any) -> torch.Tensor:
    """
    This heuristic covers three cases:

    1. The input is tuple or list whose second item is a labels tensor. This happens for already batched
       classification inputs for MixUp and CutMix (typically after the Dataloder).
    2. The input is a tuple or list whose second item is a dictionary that contains the labels tensor
       under a label-like (see below) key. This happens for the inputs of detection models.
    3. The input is a dictionary that is structured as the one from 2.

    What is "label-like" key? We first search for an case-insensitive match of 'labels' inside the keys of the
    dictionary. This is the name our detection models expect. If we can't find that, we look for a case-insensitive
    match of the term 'label' anywhere inside the key, i.e. 'FooLaBeLBar'. If we can't find that either, the dictionary
    contains no "label-like" key.
    """

    if isinstance(inputs, (tuple, list)):
        inputs = inputs[1]

    # MixUp, CutMix
    if is_pure_tensor(inputs):
        return inputs

    if not isinstance(inputs, collections.abc.Mapping):
        raise ValueError(
            f"When using the default labels_getter, the input passed to forward must be a dictionary or a two-tuple "
            f"whose second item is a dictionary or a tensor, but got {inputs} instead."
        )

    candidate_key = None
    with suppress(StopIteration):
        candidate_key = next(key for key in inputs.keys() if key.lower() == "labels")
    if candidate_key is None:
        with suppress(StopIteration):
            candidate_key = next(key for key in inputs.keys() if "label" in key.lower())
    if candidate_key is None:
        raise ValueError(
            "Could not infer where the labels are in the sample. Try passing a callable as the labels_getter parameter?"
            "If there are no labels in the sample by design, pass labels_getter=None."
        )

    return inputs[candidate_key]


def _parse_labels_getter(labels_getter: str | Callable[[Any], Any] | None) -> Callable[[Any], Any]:
    if labels_getter == "default":
        return _find_labels_default_heuristic
    elif callable(labels_getter):
        return labels_getter
    elif labels_getter is None:
        return lambda _: None
    else:
        raise ValueError(f"labels_getter should either be 'default', a callable, or None, but got {labels_getter}.")


[docs]def get_bounding_boxes(flat_inputs: list[Any]) -> tv_tensors.BoundingBoxes: """Return the Bounding Boxes in the input. Assumes only one ``BoundingBoxes`` object is present. """ # This assumes there is only one bbox per sample as per the general convention try: return next(inpt for inpt in flat_inputs if isinstance(inpt, tv_tensors.BoundingBoxes)) except StopIteration: raise ValueError("No bounding boxes were found in the sample")
[docs]def query_chw(flat_inputs: list[Any]) -> tuple[int, int, int]: """Return Channel, Height, and Width.""" chws = { tuple(get_dimensions(inpt)) for inpt in flat_inputs if check_type(inpt, (is_pure_tensor, tv_tensors.Image, PIL.Image.Image, tv_tensors.Video)) } if not chws: raise TypeError("No image or video was found in the sample") elif len(chws) > 1: raise ValueError(f"Found multiple CxHxW dimensions in the sample: {sequence_to_str(sorted(chws))}") c, h, w = chws.pop() return c, h, w
[docs]def query_size(flat_inputs: list[Any]) -> tuple[int, int]: """Return Height and Width.""" sizes = { tuple(get_size(inpt)) for inpt in flat_inputs if check_type( inpt, ( is_pure_tensor, tv_tensors.Image, PIL.Image.Image, tv_tensors.Video, tv_tensors.Mask, tv_tensors.BoundingBoxes, ), ) } if not sizes: raise TypeError("No image, video, mask or bounding box was found in the sample") elif len(sizes) > 1: raise ValueError(f"Found multiple HxW dimensions in the sample: {sequence_to_str(sorted(sizes))}") h, w = sizes.pop() return h, w
def check_type(obj: Any, types_or_checks: tuple[type | Callable[[Any], bool], ...]) -> bool: for type_or_check in types_or_checks: if isinstance(obj, type_or_check) if isinstance(type_or_check, type) else type_or_check(obj): return True return False def has_any(flat_inputs: list[Any], *types_or_checks: type | Callable[[Any], bool]) -> bool: for inpt in flat_inputs: if check_type(inpt, types_or_checks): return True return False def has_all(flat_inputs: list[Any], *types_or_checks: type | Callable[[Any], bool]) -> bool: for type_or_check in types_or_checks: for inpt in flat_inputs: if isinstance(inpt, type_or_check) if isinstance(type_or_check, type) else type_or_check(inpt): break else: return False return True

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources