Shortcuts

Source code for torchvision.transforms.v2._meta

from typing import Any, Union

from torchvision import tv_tensors
from torchvision.transforms.v2 import functional as F, Transform
from torchvision.tv_tensors._bounding_boxes import CLAMPING_MODE_TYPE


[docs]class ConvertBoundingBoxFormat(Transform): """Convert bounding box coordinates to the given ``format``, eg from "CXCYWH" to "XYXY". Args: format (str or tv_tensors.BoundingBoxFormat): output bounding box format. Possible values are defined by :class:`~torchvision.tv_tensors.BoundingBoxFormat` and string values match the enums, e.g. "XYXY" or "XYWH" etc. """ _transformed_types = (tv_tensors.BoundingBoxes,) def __init__(self, format: Union[str, tv_tensors.BoundingBoxFormat]) -> None: super().__init__() self.format = format
[docs] def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: return F.convert_bounding_box_format(inpt, new_format=self.format) # type: ignore[return-value, arg-type]
[docs]class ClampBoundingBoxes(Transform): """Clamp bounding boxes to their corresponding image dimensions. The clamping is done according to the bounding boxes' ``canvas_size`` meta-data. Args: clamping_mode: TODOBB more docs. Default is None which relies on the input box' clamping_mode attribute. """ def __init__(self, clamping_mode: Union[CLAMPING_MODE_TYPE, str] = "auto") -> None: super().__init__() self.clamping_mode = clamping_mode _transformed_types = (tv_tensors.BoundingBoxes,)
[docs] def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: return F.clamp_bounding_boxes(inpt, clamping_mode=self.clamping_mode) # type: ignore[return-value]
[docs]class ClampKeyPoints(Transform): """Clamp keypoints to their corresponding image dimensions. The clamping is done according to the keypoints' ``canvas_size`` meta-data. """ _transformed_types = (tv_tensors.KeyPoints,)
[docs] def transform(self, inpt: tv_tensors.KeyPoints, params: dict[str, Any]) -> tv_tensors.KeyPoints: return F.clamp_keypoints(inpt) # type: ignore[return-value]
class SetClampingMode(Transform): """TODOBB""" def __init__(self, clamping_mode: CLAMPING_MODE_TYPE) -> None: super().__init__() self.clamping_mode = clamping_mode if self.clamping_mode not in (None, "soft", "hard"): raise ValueError(f"clamping_mode must be soft, hard or None, got {clamping_mode}") _transformed_types = (tv_tensors.BoundingBoxes,) def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: out: tv_tensors.BoundingBoxes = inpt.clone() # type: ignore[assignment] out.clamping_mode = self.clamping_mode return out

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources