RandomPerspective¶
- class torchvision.transforms.v2.RandomPerspective(distortion_scale: float = 0.5, p: float = 0.5, interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, fill: Union[int, float, Sequence[int], Sequence[float], None, Dict[Union[Type, str], Optional[Union[int, float, Sequence[int], Sequence[float]]]]] = 0)[source]¶
[BETA] Perform a random perspective transformation of the input with a given probability.
Note
The RandomPerspective transform is in Beta stage, and while we do not expect disruptive breaking changes, some APIs may slightly change according to user feedback. Please submit any feedback you may have in this issue: https://github.com/pytorch/vision/issues/6753.
If the input is a
torch.Tensoror aTVTensor(e.g.Image,Video,BoundingBoxesetc.) it can have arbitrary number of leading batch dimensions. For example, the image can have[..., C, H, W]shape. A bounding box can have[..., 4]shape.- Parameters:
distortion_scale (float, optional) – argument to control the degree of distortion and ranges from 0 to 1. Default is 0.5.
p (float, optional) – probability of the input being transformed. Default is 0.5.
interpolation (InterpolationMode, optional) – Desired interpolation enum defined by
torchvision.transforms.InterpolationMode. Default isInterpolationMode.BILINEAR. If input is Tensor, onlyInterpolationMode.NEAREST,InterpolationMode.BILINEARare supported. The corresponding Pillow integer constants, e.g.PIL.Image.BILINEARare accepted as well.fill (number or tuple or dict, optional) – Pixel fill value used when the
padding_modeis constant. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. Fill value can be also a dictionary mapping data type to the fill value, e.g.fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}whereImagewill be filled with 127 andMaskwill be filled with 0.
Examples using
RandomPerspective:- static get_params(width: int, height: int, distortion_scale: float) Tuple[List[List[int]], List[List[int]]][source]¶
Get parameters for
perspectivefor a random perspective transform.- Parameters:
- Returns:
List containing [top-left, top-right, bottom-right, bottom-left] of the original image, List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.