.. Add tutorial cards below this line
.. customcarditem::
:header: Profiling PyTorch
:card_description: Learn how to profile a PyTorch application
:link: beginner/profiler.html
:tags: Profiling
.. customcarditem::
:header: Parametrizations Tutorial
:card_description: Learn how to use torch.nn.utils.parametrize to put constraints on your parameters (e.g. make them orthogonal, symmetric positive definite, low-rank...)
:image: _static/img/thumbnails/cropped/parametrizations.png
:link: intermediate/parametrizations.html
:tags: Model-Optimization,Best-Practice
.. customcarditem::
:header: Pruning Tutorial
:card_description: Learn how to use torch.nn.utils.prune to sparsify your neural networks, and how to extend it to implement your own custom pruning technique.
:image: _static/img/thumbnails/cropped/Pruning-Tutorial.png
:link: intermediate/pruning_tutorial.html
:tags: Model-Optimization,Best-Practice
.. customcarditem::
:header: Inductor CPU Backend Debugging and Profiling
:card_description: Learn the usage, debugging and performance profiling for ``torch.compile`` with Inductor CPU backend.
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
:link: intermediate/inductor_debug_cpu.html
:tags: Model-Optimization,inductor
.. customcarditem::
:header: (beta) Implementing High-Performance Transformers with SCALED DOT PRODUCT ATTENTION
:card_description: This tutorial explores the new torch.nn.functional.scaled_dot_product_attention and how it can be used to construct Transformer components.
:image: _static/img/thumbnails/cropped/pytorch-logo.png
:link: intermediate/scaled_dot_product_attention_tutorial.html
:tags: Model-Optimization,Attention,Transformer
.. customcarditem::
:header: Knowledge Distillation in Convolutional Neural Networks
:card_description: Learn how to improve the accuracy of lightweight models using more powerful models as teachers.
:image: _static/img/thumbnails/cropped/knowledge_distillation_pytorch_logo.png
:link: beginner/knowledge_distillation_tutorial.html
:tags: Model-Optimization,Image/Video
.. Frontend APIs
.. customcarditem::
:header: (beta) Channels Last Memory Format in PyTorch
:card_description: Get an overview of Channels Last memory format and understand how it is used to order NCHW tensors in memory preserving dimensions.
:image: _static/img/thumbnails/cropped/experimental-Channels-Last-Memory-Format-in-PyTorch.png
:link: intermediate/memory_format_tutorial.html
:tags: Memory-Format,Best-Practice,Frontend-APIs
.. customcarditem::
:header: Forward-mode Automatic Differentiation
:card_description: Learn how to use forward-mode automatic differentiation.
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
:link: intermediate/forward_ad_usage.html
:tags: Frontend-APIs
.. customcarditem::
:header: Jacobians, Hessians, hvp, vhp, and more
:card_description: Learn how to compute advanced autodiff quantities using torch.func
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
:link: intermediate/jacobians_hessians.html
:tags: Frontend-APIs
.. customcarditem::
:header: Model Ensembling
:card_description: Learn how to ensemble models using torch.vmap
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
:link: intermediate/ensembling.html
:tags: Frontend-APIs
.. customcarditem::
:header: Per-Sample-Gradients
:card_description: Learn how to compute per-sample-gradients using torch.func
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
:link: intermediate/per_sample_grads.html
:tags: Frontend-APIs
.. customcarditem::
:header: Neural Tangent Kernels
:card_description: Learn how to compute neural tangent kernels using torch.func
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
:link: intermediate/neural_tangent_kernels.html
:tags: Frontend-APIs
.. customcarditem::
:header: Using the PyTorch C++ Frontend
:card_description: Walk through an end-to-end example of training a model with the C++ frontend by training a DCGAN – a kind of generative model – to generate images of MNIST digits.
:image: _static/img/thumbnails/cropped/Using-the-PyTorch-Cpp-Frontend.png
:link: advanced/cpp_frontend.html
:tags: Frontend-APIs,C++
.. customcarditem::
:header: Autograd in C++ Frontend
:card_description: The autograd package helps build flexible and dynamic nerural netorks. In this tutorial, exploreseveral examples of doing autograd in PyTorch C++ frontend
:image: _static/img/thumbnails/cropped/Autograd-in-Cpp-Frontend.png
:link: advanced/cpp_autograd.html
:tags: Frontend-APIs,C++
.. End of tutorial card section
.. -----------------------------------------
.. Page TOC
.. -----------------------------------------
.. toctree::
:maxdepth: 2
:includehidden:
:hidden:
beginner/profiler
beginner/vt_tutorial
intermediate/parametrizations
intermediate/pruning_tutorial
intermediate/inductor_debug_cpu
intermediate/scaled_dot_product_attention_tutorial
beginner/knowledge_distillation_tutorial
.. toctree::
:maxdepth: 2
:includehidden:
:hidden:
:caption: Frontend APIs
intermediate/memory_format_tutorial
intermediate/forward_ad_usage
intermediate/jacobians_hessians
intermediate/ensembling
intermediate/per_sample_grads
intermediate/neural_tangent_kernels.py
advanced/cpp_frontend
advanced/cpp_autograd