Shortcuts

Source code for torchtune.modules.peft._utils

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import contextlib
from typing import (
    Any,
    Dict,
    Generator,
    List,
    Literal,
    Optional,
    Protocol,
    runtime_checkable,
    Set,
    Union,
)

import torch
from torch import nn
from torchtune.utils._logging import deprecate_parameter

# Modules from MultiHeadAttention that LoRA can be applied to
LORA_ATTN_MODULES = Literal["q_proj", "k_proj", "v_proj", "output_proj"]


[docs]@runtime_checkable class AdapterModule(Protocol): """ Interface for an ``nn.Module`` containing adapter weights. Note that an adapter module does not have to explicitly implement this protocol, but it must define the ``adapter_params(self)`` method. """
[docs] def adapter_params(self) -> List[str]: """ Return a list of strings corresponding to the names of the ``nn.Parameter`` s in the model coming from the adapter. E.g. if an nn.Module has adapter ``self.proj = nn.Linear(in_dim, out_dim)``, then adapter_params should return ``['proj.weight', 'proj.bias']``. See LoRALinear's :func:`~torchtune.modules.peft.LoRALinear.adapter_params` for an example. """ pass
[docs]def get_adapter_params(model: nn.Module) -> Dict[str, nn.Parameter]: """ Return the subset of parameters from a model that correspond to an adapter. Assumes that any adapter class has defined the :func:`~torchtune.modules.peft.AdapterModule.adapter_params` method. Args: model (nn.Module): Instance of model class containing some adapter params. Returns: Dict[str, nn.Parameter]: the subset of model's state dict containing only adapter parameters. """ adapter_params = {} for k, v in model.named_modules(): if hasattr(v, "adapter_params") and callable(v.adapter_params): current_adapter_params = v.adapter_params() for n, p in v.named_parameters(recurse=True): if n in current_adapter_params: full_key = f"{k}.{n}" if k else n adapter_params.update({full_key: p}) current_adapter_params.remove(n) assert ( current_adapter_params == [] ), f"Adapter params {current_adapter_params} not converted" return adapter_params
[docs]def set_trainable_params( model: nn.Module, adapter_params: Union[Dict[str, Any], Set] ) -> None: """ Set trainable parameters for an nn.Module based on a state dict of adapter parameters. Args: model (nn.Module): Instance of model class containing some adapter params. adapter_params (Union[Dict[str, Any], Set]): State dict mapping adapter key names to their respective nn.Parameters (i.e. outputs of :func:`~torchtune.modules.peft.get_adapter_params`.) Returns: None """ for k, v in model.named_parameters(): v.requires_grad_(k in adapter_params)
def get_lora_module_names( lora_attn_modules: List[LORA_ATTN_MODULES], apply_lora_to_mlp: bool, apply_lora_to_output: bool, ) -> List[str]: """ Return a list of the names of modules in the model that have LoRA applied. Note that the names here are local to their modules and not the fully qualified names from the model state dict. Args: lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers LoRA should be applied to in each self-attention block. Options are ``{"q_proj", "k_proj", "v_proj", "output_proj"}``. apply_lora_to_mlp (bool): whether LoRA is applied to each MLP linear. apply_lora_to_output (bool): whether LoRA is applied to the final output projection. Returns: List[str]: list of module names in the model that have LoRA applied. """ lora_module_keys = lora_attn_modules if apply_lora_to_mlp: lora_module_keys = lora_module_keys + ["w1", "w2", "w3"] if apply_lora_to_output: lora_module_keys.append("output") return lora_module_keys
[docs]def get_adapter_state_dict( state_dict: Dict[str, Any], device: Optional[str] = "cpu" ) -> Dict[str, Any]: """ Return the subset of the full state_dict from a model that correspond to an adapter. Assumes that "lora" and "magnitude" are unique names for adapter parameters, and that the state_dict is not sharded. All returned parameters are moved to CPU. Args: state_dict (Dict[str, Any]): Full model state dict. device (Optional[str]): device to move adapter parameters to. Default: 'cpu' Returns: Dict[str, Any]: the subset of model's state dict containing only adapter parameters. """ adapter_key_filter = lambda x: "lora" in x or "magnitude" in x return {k: v.to(device) for k, v in state_dict.items() if adapter_key_filter(k)}
def _get_lora_modules(state_dict: Dict[str, Any]) -> Set[str]: """ Get the keys from a state dict that correspond to LoRALinear modules. For example, if state_dict is the state dict of model and model.x.y.z is a LoRALinear, this method will return "model.x.y.z", not "model.x.y.z.lora_a.weight" or "model.x.y.z.lora_b.weight". Args: state_dict (Dict[str, Any]): State dict from a model. Returns: Set[str]: Set of keys in the state dict that correspond to LoRA modules. """ lora_keys = [ k for k in state_dict.keys() if ("lora" in k or "magnitude" in k) and ("experts" not in k) ] return set( [ k.replace(".lora_a.weight", "") .replace(".lora_b.weight", "") .replace(".magnitude", "") for k in lora_keys ] ) def _get_lora_moe_modules(state_dict: Dict[str, Any]) -> Set[str]: """ Get the keys from a state dict that correspond to LoRAGroupedExperts modules. For example, if state_dict is the state dict of model and model.x.y.z is a LoRAGroupedExperts, this method will return "model.x.y.z", not "model.x.y.z.lora_a.weight" or "model.x.y.z.lora_b.weight". Args: state_dict (Dict[str, Any]): State dict from a model. Returns: Set[str]: Set of keys in the state dict that correspond to LoRA MoE modules. """ lora_keys = [k for k in state_dict.keys() if "lora" in k and "experts" in k] return set( [ k.replace(".lora_gate_a", "") .replace(".lora_gate_b", "") .replace(".lora_down_a", "") .replace(".lora_down_b", "") .replace(".lora_up_a", "") .replace(".lora_up_b", "") for k in lora_keys ] ) @torch.no_grad def get_merged_lora_ckpt( state_dict: Dict[str, Any], rank: int, alpha: float, ) -> Dict[str, Any]: """ Merge LoRA weights into the base model format for efficient inference. NOTE: This function modifies state_dict inplace. If you do not want to do that, make a copy prior to calling this function. For every LoRA module in the state dict, this function will convert its base weight then delete the LoRA-specific parameters. Args: state_dict (Dict[str, Any]): State dict from a model. rank (int): The rank of LoRA matrices. alpha (float): The alpha value used for scaling LoRA decompositions. Returns: Dict[str, Any]: The merged state dict. """ lora_modules = _get_lora_modules(state_dict) lora_moe_modules = _get_lora_moe_modules(state_dict) for module in lora_modules.union(lora_moe_modules): # TODO: we don't currently support DoRA for MoE layers if "experts" in module: for param in ["gate", "up", "down"]: lora_a_weight = state_dict[f"{module}.lora_{param}_a"] lora_b_weight = state_dict[f"{module}.lora_{param}_b"] state_dict[f"{module}.{param}_proj"] += ( (alpha / rank) * lora_b_weight.transpose(1, 2)
[docs] @ lora_a_weight.transpose(1, 2) ).transpose(1, 2) del state_dict[f"{module}.lora_{param}_a"] del state_dict[f"{module}.lora_{param}_b"] continue lora_a_weight = state_dict[f"{module}.lora_a.weight"] lora_b_weight = state_dict[f"{module}.lora_b.weight"] lora_magnitude = state_dict.get(f"{module}.magnitude", None) # If magnitude is present, calculate merged DoRA weight if lora_magnitude is not None: base_weight = state_dict[f"{module}.weight"].to(lora_a_weight.dtype) lora_weight = (alpha / rank) * lora_b_weight @ lora_a_weight merged_weight = base_weight + lora_weight weight_norm = torch.linalg.norm(base_weight + lora_weight, dim=1) mag_norm_scale = (lora_magnitude / weight_norm).view(-1, 1) merged_weight *= mag_norm_scale state_dict[f"{module}.weight"] = merged_weight del state_dict[f"{module}.magnitude"] # Otherwise it is just vanilla LoRA else: state_dict[f"{module}.weight"] += ( (alpha / rank) * lora_b_weight @ lora_a_weight ) del state_dict[f"{module}.lora_a.weight"] del state_dict[f"{module}.lora_b.weight"] return state_dict @contextlib.contextmanager def disable_adapter(model: nn.Module) -> Generator[None, None, None]: """ Temporarily disable the adapters in a model. For example, this can be used in DPO for treating the LoRA adapters as the policy model and disabling it to treat the base model as the reference model. This context manager goes through all modules in the provided neural network model, and if a module has an ``adapter_params`` attribute that is callable and a ``disabled`` attribute, it sets ``disabled`` to True. Then, the control is given back to caller. When exiting the context manager, it sets ``disabled`` back to False for all modules that were temporarily disabled. Args: model (nn.Module): The model whose adapters are to be temporarily disabled. Yields: None: This function yields control back to the caller, with the adapters disabled. Example: >>> with disable_adapter(model): ... # Perform operations with adapters disabled ... pass """ for _, module in model.named_modules(): if ( hasattr(module, "adapter_params") and callable(module.adapter_params) and hasattr(module, "disabled") ): module.disabled = True try: yield finally: for _, module in model.named_modules(): if ( hasattr(module, "adapter_params") and callable(module.adapter_params) and hasattr(module, "disabled") ): module.disabled = False
[docs]@deprecate_parameter( param_name="lora_attn_modules", msg="Please use state_dict_keys instead." ) @deprecate_parameter( param_name="apply_lora_to_mlp", msg="Please use state_dict_keys instead." ) @deprecate_parameter( param_name="apply_lora_to_output", msg="Please use state_dict_keys instead." ) def validate_missing_and_unexpected_for_lora( lora_attn_modules: Optional[List[LORA_ATTN_MODULES]] = None, apply_lora_to_mlp: Optional[bool] = None, apply_lora_to_output: Optional[bool] = None, state_dict_keys: Optional[List[str]] = None, base_missing: Optional[List[str]] = None, base_unexpected: Optional[List[str]] = None, lora_missing: Optional[List[str]] = None, lora_unexpected: Optional[List[str]] = None, ) -> None: """ This function checks that LoRA and/or base model weights are loaded into the full model correctly. via set comparison of the missing kets. This function relies only on the values of missing and unexpected as returned by the load_state_dict API with strict=False. Args: lora_attn_modules (Optional[List[LORA_ATTN_MODULES]]): list of which linear layers LoRA should be applied to in each self-attention block. Options are ``{"q_proj", "k_proj", "v_proj", "output_proj"}``. DEPRECATED: use state_dict_keys instead. apply_lora_to_mlp (Optional[bool]): whether LoRA is applied to each MLP linear. DEPRECATED: use state_dict_keys instead. apply_lora_to_output (Optional[bool]): whether LoRA is applied to the final output projection. DEPRECATED: use state_dict_keys instead. state_dict_keys (Optional[List[str]]): ground truth model state dict we are validating against base_missing (Optional[List[str]]): List of missing keys when loading base model weights. Default: None base_unexpected (Optional[List[str]]): List of unexpected keys when loading base model weights. Default: None lora_missing (Optional[List[str]]): List of missing keys when loading LoRA weights. Default: None lora_unexpected (Optional[List[str]]): List of unexpected keys when loading LoRA weights. Default: None Returns: None Raises: RuntimeError: If base_missing contains any base model keys, **or** if base_unexpected is nonempty, **or** if lora_missing contains any LoRA keys, **or** if lora_unexpected is nonempty. """ if state_dict_keys is not None: is_lora_key = lambda x: "lora" in x or "magnitude" in x base_state_dict = set(k for k in state_dict_keys if not is_lora_key(k)) lora_state_dict = set(k for k in state_dict_keys if is_lora_key(k)) base_missing_set = set(base_missing or []) lora_missing_set = set(lora_missing or []) # Base missing should have LoRA keys only, and LoRA missing should have base model keys only # If there is an overlap, check if the key is adapter or base model key and raise accordingly missing_keys = ( (base_missing_set & lora_missing_set) | (lora_missing_set & lora_state_dict) | (base_missing_set & base_state_dict) ) err_msgs = [] for key in missing_keys: if key in base_state_dict: err_msgs.append(f"- Missing non-LoRA key {key} from base model dict") elif key in lora_state_dict: err_msgs.append(f"- Missing LoRA key {key} from adapter state dict") else: raise RuntimeError(f"Unexpected key found missing: {key}") if len(err_msgs) > 0: raise RuntimeError( "Missing keys when validating state dict: \n" + "\n".join(err_msgs) ) else: assert lora_attn_modules is not None assert apply_lora_to_mlp is not None assert apply_lora_to_output is not None lora_modules = get_lora_module_names( lora_attn_modules, apply_lora_to_mlp, apply_lora_to_output ) is_lora_param = lambda x: any( [ ".".join([k, "lora"]) in x or ".".join([k, "magnitude"]) in x for k in lora_modules ] ) if base_missing: for k in base_missing: if not is_lora_param(k): raise RuntimeError(f"Missing non-LoRA key {k} from base model dict") if lora_missing: for k in lora_missing: if is_lora_param(k): raise RuntimeError(f"Missing LoRA key {k} from adapter state dict") if base_unexpected: raise RuntimeError("Unexpected key loading base model") if lora_unexpected: raise RuntimeError("Unexpected key loading adapter")

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources