Shortcuts

Source code for torcheval.metrics.functional.classification.binned_auprc

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from typing import List, Optional, Tuple, Union

import torch
from torcheval.metrics.functional.classification.binned_precision_recall_curve import (
    _binary_binned_precision_recall_curve_compute,
    _binary_binned_precision_recall_curve_update,
    _multiclass_binned_precision_recall_curve_compute,
    _multiclass_binned_precision_recall_curve_update,
    _multilabel_binned_precision_recall_curve_compute,
    _multilabel_binned_precision_recall_curve_update,
    _optimization_param_check,
)
from torcheval.metrics.functional.tensor_utils import (
    _create_threshold_tensor,
    _riemann_integral,
)

DEFAULT_NUM_THRESHOLD = 100


[docs]@torch.inference_mode() def binary_binned_auprc( input: torch.Tensor, target: torch.Tensor, *, num_tasks: int = 1, threshold: Union[int, List[float], torch.Tensor] = DEFAULT_NUM_THRESHOLD, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Binned Version of AUPRC, which is the area under the AUPRC Curve, for binary classification. Its class version is ``torcheval.metrics.BinaryBinnedAUPRC``. Computation is done by computing the area under the precision/recall curve; precision and recall are computed for the buckets defined by `threshold`. Args: input (Tensor): Tensor of label predictions It should be predicted label, probabilities or logits with shape of (num_tasks, n_sample) or (n_sample, ). target (Tensor): Tensor of ground truth labels with shape of (num_tasks, n_sample) or (n_sample, ). num_tasks (int): Number of tasks that need binary_binned_auprc calculation. Default value is 1. binary_binned_auprc for each task will be calculated independently. threshold (Tensor, int, List[float]): Either an integer representing the number of bins, a list of thresholds, or a tensor of thresholds. The same thresholds will be used for all tasks. If `threshold` is a tensor, it must be 1D. If list or tensor is given, the first element must be 0 and the last must be 1. Examples: >>> import torch >>> from torcheval.metrics.functional import binary_binned_auprc >>> input = torch.tensor([0.2, 0.3, 0.4, 0.5]) >>> target = torch.tensor([0, 0, 1, 1]) >>> binary_binned_auprc(input, target, threshold=5) (tensor(1.0), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])) >>> input = torch.tensor([0.2, 0.3, 0.4, 0.5]) >>> target = torch.tensor([0, 0, 1, 1]) >>> threshold = torch.tensor([0.0000, 0.2500, 0.7500, 1.0000]) >>> binary_binned_auprc(input, target, threshold=threshold) (tensor(0.6667), tensor([0.0000, 0.2500, 0.7500, 1.0000])) >>> input = torch.tensor([[0.2, 0.3, 0.4, 0.5], [0, 1, 2, 3]]) >>> target = torch.tensor([[0, 0, 1, 1], [0, 1, 1, 1]]) >>> threshold = torch.tensor([0.0000, 0.2500, 0.7500, 1.0000]) >>> binary_binned_auprc(input, target, num_tasks=2, threshold=threshold) (tensor([0.6667, 1.0000], tensor([0.0000, 0.2500, 0.7500, 1.0000])) """ threshold = _create_threshold_tensor(threshold, target.device) _binary_binned_auprc_param_check(num_tasks, threshold) _binary_binned_auprc_update_input_check(input, target, num_tasks, threshold) return _binary_binned_auprc_compute(input, target, num_tasks, threshold), threshold
def _binary_binned_auprc_compute( input: torch.Tensor, target: torch.Tensor, num_tasks: int, threshold: torch.Tensor, ) -> torch.Tensor: if num_tasks == 1 and input.ndim == 1: num_tp, num_fp, num_fn = _binary_binned_precision_recall_curve_update( input, target, threshold ) precision, recall, _ = _binary_binned_precision_recall_curve_compute( num_tp, num_fp, num_fn, threshold ) auprc_result = _riemann_integral(recall, precision) else: auprcs = [] for i in range(num_tasks): num_tp, num_fp, num_fn = _binary_binned_precision_recall_curve_update( input[i, :], target[i, :], threshold ) precision, recall, _ = _binary_binned_precision_recall_curve_compute( num_tp, num_fp, num_fn, threshold ) auprcs.append(_riemann_integral(recall, precision)) auprc_result = torch.tensor(auprcs, device=input.device) auprc_result = torch.nan_to_num(auprc_result, nan=0.0) return auprc_result def _binary_binned_auprc_param_check( num_tasks: int, threshold: torch.Tensor, ) -> None: if num_tasks < 1: raise ValueError("`num_tasks` has to be at least 1.") if threshold.ndim != 1: raise ValueError( f"`threshold` should be 1-dimensional, but got {threshold.ndim}D tensor." ) if (torch.diff(threshold) < 0.0).any(): raise ValueError("The `threshold` should be a sorted tensor.") if (threshold < 0.0).any() or (threshold > 1.0).any(): raise ValueError("The values in `threshold` should be in the range of [0, 1].") if threshold[0] != 0: raise ValueError("First value in `threshold` should be 0.") if threshold[-1] != 1: raise ValueError("Last value in `threshold` should be 1.") def _binary_binned_auprc_update_input_check( input: torch.Tensor, target: torch.Tensor, num_tasks: int, threshold: torch.Tensor, ) -> None: if input.shape != target.shape: raise ValueError( "The `input` and `target` should have the same shape, " f"got shapes {input.shape} and {target.shape}." ) elif num_tasks == 1: # for num_tasks = 1, accept 1D or 2D tensor if input.ndim not in (1, 2): raise ValueError( f"`num_tasks = 1`, `input` is expected to be 1D or 2D tensor, but got shape {input.shape}." ) else: # for num_tasks > 1, accept 2D tensor only, and the shape should be (num_tasks, num_samples) if input.ndim != 2: raise ValueError( f"`num_tasks = {num_tasks}`, `input` is expected to be 2D tensor, but got shape {input.shape}." ) elif input.shape[0] != num_tasks: raise ValueError( f"`num_tasks = {num_tasks}`, `input`'s shape is expected to be ({num_tasks}, num_samples), but got shape {input.shape}." )
[docs]@torch.inference_mode() def multiclass_binned_auprc( input: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, *, threshold: Union[int, List[float], torch.Tensor] = DEFAULT_NUM_THRESHOLD, average: Optional[str] = "macro", optimization: str = "vectorized", ) -> Tuple[torch.Tensor, torch.Tensor]: """ Binned Version of AUPRC, which is the area under the AUPRC Curve, for multiclass classification. Its class version is ``torcheval.metrics.MulticlassBinnedAUPRC``. Computation is done by computing the area under the precision/recall curve; precision and recall are computed for the buckets defined by `threshold`. Args: input (Tensor): Tensor of label predictions It should be probabilities or logits with shape of (n_samples, n_classes). target (Tensor): Tensor of ground truth labels with shape of (n_samples, ). num_classes (int): Number of classes. threshold (Tensor, int, List[float]): Either an integer representing the number of bins, a list of thresholds, or a tensor of thresholds. The same thresholds will be used for all tasks. If `threshold` is a tensor, it must be 1D. If list or tensor is given, the first element must be 0 and the last must be 1. average (str, optional): - ``'macro'`` [default]: Calculate metrics for each class separately, and return their unweighted mean. - ``None``: Calculate the metric for each class separately, and return the metric for every class. optimization (str): Choose the optimization to use. Accepted values: "vectorized" and "memory". The "vectorized" optimization makes more use of vectorization but uses more memory; the "memory" optimization uses less memory but takes more steps. Here are the tradeoffs between these two options: - "vectorized": consumes more memory but is faster on some hardware, e.g. modern GPUs. - "memory": consumes less memory but can be significantly slower on some hardware, e.g. modern GPUs Generally, on GPUs, the "vectorized" optimization requires more memory but is faster; the "memory" optimization requires less memory but is slower. On CPUs, the "memory" optimization is recommended in all cases; it uses less memory and is faster. Examples:: >>> import torch >>> from torcheval.metrics.functional import multiclass_binned_auroc >>> input = torch.tensor([[0.1, 0.2, 0.1], [0.4, 0.2, 0.1], [0.6, 0.1, 0.2], [0.4, 0.2, 0.3], [0.6, 0.2, 0.4]]) >>> target = torch.tensor([0, 1, 2, 1, 0]) >>> multiclass_binned_auprc(input, target, num_classes=3, threshold=5, average='macro') (tensor(0.35), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])) >>> multiclass_binned_auprc(input, target, num_classes=3, threshold=5, average=None) (tensor([0.4500, 0.4000, 0.2000]), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])) >>> input = torch.tensor([[0.1, 0.2, 0.1, 0.4], [0.4, 0.2, 0.1, 0.7], [0.6, 0.1, 0.2, 0.4], [0.4, 0.2, 0.3, 0.2], [0.6, 0.2, 0.4, 0.5]]) >>> target = torch.tensor([0, 1, 2, 1, 0]) >>> threshold = torch.tensor([0.0, 0.1, 0.4, 0.7, 0.8, 1.0]) >>> multiclass_binned_auprc(input, target, num_classes=4, threshold=threshold, average='macro') (tensor(0.24375), tensor([0.0, 0.1, 0.4, 0.7, 0.8, 1.0])) >>> multiclass_binned_auprc(input, target, num_classes=4, threshold=threshold, average=None) (tensor([0.3250, 0.2000, 0.2000, 0.2500]), tensor([0.0, 0.1, 0.4, 0.7, 0.8, 1.0])) """ _optimization_param_check(optimization) if num_classes is None: num_classes = input.shape[1] threshold = _create_threshold_tensor(threshold, target.device) _multiclass_binned_auprc_param_check(num_classes, threshold, average) _multiclass_binned_auprc_update_input_check(input, target, num_classes) return ( _multiclass_binned_auprc_compute( input, target, num_classes, threshold, average, optimization ), threshold, )
def _multiclass_binned_auprc_compute( input: torch.Tensor, target: torch.Tensor, num_classes: int, threshold: torch.Tensor, average: Optional[str] = "macro", optimization: str = "vectorized", ) -> torch.Tensor: num_tp, num_fp, num_fn = _multiclass_binned_precision_recall_curve_update( input, target, num_classes, threshold, optimization ) prec, recall, thresh = _multiclass_binned_precision_recall_curve_compute( num_tp, num_fp, num_fn, num_classes, threshold ) return _compute_riemann_integrals(prec, recall, average, input.device) def _multiclass_binned_auprc_param_check( num_classes: int, threshold: torch.Tensor, average: Optional[str], ) -> None: average_options = ("macro", "none", None) if average not in average_options: raise ValueError( f"`average` was not in the allowed value of {average_options}, got {average}." ) if num_classes < 2: raise ValueError("`num_classes` has to be at least 2.") if threshold.ndim != 1: raise ValueError( f"`threshold` should be 1-dimensional, but got {threshold.ndim}D tensor." ) if (torch.diff(threshold) < 0.0).any(): raise ValueError("The `threshold` should be a sorted tensor.") if (threshold < 0.0).any() or (threshold > 1.0).any(): raise ValueError("The values in `threshold` should be in the range of [0, 1].") if threshold[0] != 0: raise ValueError("First value in `threshold` should be 0.") if threshold[-1] != 1: raise ValueError("Last value in `threshold` should be 1.") def _multiclass_binned_auprc_update_input_check( input: torch.Tensor, target: torch.Tensor, num_classes: int, ) -> None: if input.size(0) != target.size(0): raise ValueError( "The `input` and `target` should have the same first dimension, " f"got shapes {input.shape} and {target.shape}." ) if target.ndim != 1: raise ValueError( "target should be a one-dimensional tensor, " f"got shape {target.shape}." ) if not (input.ndim == 2 and input.shape[1] == num_classes): raise ValueError( f"input should have shape of (num_sample, num_classes), " f"got {input.shape} and num_classes={num_classes}." )
[docs]@torch.inference_mode() def multilabel_binned_auprc( input: torch.Tensor, target: torch.Tensor, num_labels: Optional[int] = None, *, threshold: Union[int, List[float], torch.Tensor] = DEFAULT_NUM_THRESHOLD, average: Optional[str] = "macro", optimization: str = "vectorized", ) -> Tuple[torch.Tensor, torch.Tensor]: """ Binned Version of AUPRC, which is the area under the AUPRC Curve, for multilabel classification. Its class version is ``torcheval.metrics.MultilabelBinnedAUPRC``. Computation is done by computing the area under the precision/recall curve; precision and recall are computed for the buckets defined by `threshold`. Args: input (Tensor): Tensor of label predictions It should be probabilities or logits with shape of (n_samples, n_labels). target (Tensor): Tensor of ground truth labels with shape of (n_samples, n_labels). num_labels (int, optional): Number of labels. threshold (Tensor, int, List[float]): Either an integer representing the number of bins, a list of thresholds, or a tensor of thresholds. The same thresholds will be used for all tasks. If `threshold` is a tensor, it must be 1D. If list or tensor is given, the first element must be 0 and the last must be 1. average (str, optional): - ``'macro'`` [default]: Calculate metrics for each label separately, and return their unweighted mean. - ``None``: Calculate the metric for each label separately, and return the metric for every label. optimization (str): Choose the optimization to use. Accepted values: "vectorized" and "memory". The "vectorized" optimization makes more use of vectorization but uses more memory; the "memory" optimization uses less memory but takes more steps. Here are the tradeoffs between these two options: - "vectorized": consumes more memory but is faster on some hardware, e.g. modern GPUs. - "memory": consumes less memory but can be significantly slower on some hardware, e.g. modern GPUs Generally, on GPUs, the "vectorized" optimization requires more memory but is faster; the "memory" optimization requires less memory but is slower. On CPUs, the "memory" optimization is recommended in all cases; it uses less memory and is faster. Examples:: >>> import torch >>> from torcheval.metrics.functional import multilabel_binned_auprc >>> input = torch.tensor([[0.75, 0.05, 0.35], [0.45, 0.75, 0.05], [0.05, 0.55, 0.75], [0.05, 0.65, 0.05]]) >>> target = torch.tensor([[1, 0, 1], [0, 0, 0], [0, 1, 1], [1, 1, 1]]) >>> multilabel_binned_auprc(input, target, num_labels=3, threshold=5, average='macro') (tensor([0.7500, 0.6667, 0.9167]), tensor([0.0000, 0.1000, 0.4000, 0.7000, 0.8000, 1.0000])) >>> threshold = torch.tensor([0.0, 0.1, 0.4, 0.7, 0.8, 1.0]) >>> multilabel_binned_auprc(input, target, num_labels=3, threshold=threshold, average=None) tensor(0.7500) >>> multilabel_binned_auprc(input, target, num_labels=3, threshold=threshold, average='macro') tensor([0.7500, 0.5833, 0.9167]) """ _optimization_param_check(optimization) if num_labels is None: num_labels = input.shape[1] threshold = _create_threshold_tensor(threshold, target.device) _multilabel_binned_auprc_param_check(num_labels, threshold, average) _multilabel_binned_auprc_update_input_check(input, target, num_labels) return ( _multilabel_binned_auprc_compute( input, target, num_labels, threshold, average, optimization ), threshold, )
def _multilabel_binned_auprc_compute( input: torch.Tensor, target: torch.Tensor, num_labels: int, threshold: torch.Tensor, average: Optional[str] = "macro", optimization: str = "vectorized", ) -> torch.Tensor: num_tp, num_fp, num_fn = _multilabel_binned_precision_recall_curve_update( input, target, num_labels, threshold, optimization ) prec, recall, thresh = _multilabel_binned_precision_recall_curve_compute( num_tp, num_fp, num_fn, num_labels, threshold ) return _compute_riemann_integrals(prec, recall, average, input.device) def _multilabel_binned_auprc_param_check( num_labels: int, threshold: torch.Tensor, average: Optional[str], ) -> None: average_options = ("macro", "none", None) if average not in average_options: raise ValueError( f"`average` was not in the allowed value of {average_options}, got {average}." ) if num_labels < 2: raise ValueError("`num_labels` has to be at least 2.") if threshold.ndim != 1: raise ValueError( f"`threshold` should be 1-dimensional, but got {threshold.ndim}D tensor." ) if (torch.diff(threshold) < 0.0).any(): raise ValueError("The `threshold` should be a sorted tensor.") if (threshold < 0.0).any() or (threshold > 1.0).any(): raise ValueError("The values in `threshold` should be in the range of [0, 1].") if threshold[0] != 0: raise ValueError("First value in `threshold` should be 0.") if threshold[-1] != 1: raise ValueError("Last value in `threshold` should be 1.") def _multilabel_binned_auprc_update_input_check( input: torch.Tensor, target: torch.Tensor, num_labels: int, ) -> None: if input.shape != target.shape: raise ValueError( "Expected both input.shape and target.shape to have the same shape" f" but got {input.shape} and {target.shape}." ) if input.ndim != 2: raise ValueError( f"input should be a two-dimensional tensor, got shape {input.shape}." ) if input.shape[1] != num_labels: raise ValueError( f"input should have shape of (num_sample, num_labels), " f"got {input.shape} and num_labels={num_labels}." ) def _compute_riemann_integrals( prec: List[torch.Tensor], recall: List[torch.Tensor], average: Optional[str] = "macro", device: Optional[torch.device] = None, ) -> torch.Tensor: auprcs = [] for p, r in zip(prec, recall): auprcs.append(_riemann_integral(r, p)) auprcs = torch.tensor(auprcs, device=device).nan_to_num(nan=0.0) if average == "macro": return torch.mean(auprcs) else: return auprcs

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources