torchrl.modules.mcts.EXP3Score¶
- class torchrl.modules.mcts.EXP3Score(*args, **kwargs)[source]¶
Computes action selection probabilities for the EXP3 algorithm in MCTS.
EXP3 (Exponential-weight algorithm for Exploration and Exploitation) is a bandit algorithm that performs well in adversarial or non-stationary environments. It maintains weights for each action and adjusts them based on received rewards.
- Parameters:
gamma (float, optional) – Exploration factor, balancing uniform exploration and exploitation of current weights. Must be in [0, 1]. Defaults to 0.1.
weights_key (NestedKey, optional) – Key in the input TensorDictBase for the tensor containing current action weights. Defaults to “weights”.
action_prob_key (NestedKey, optional) – Key to store the calculated action probabilities. Defaults to “action_prob”.
score_key (NestedKey, optional) – Key where the calculated action probabilities will be stored. Defaults to “score”.
num_actions_key (NestedKey, optional) – Key for the number of available actions (K). Defaults to “num_actions”.
- Input Keys:
weights_key (torch.Tensor): Tensor of shape (…, num_actions).
num_actions_key (int or torch.Tensor): Scalar representing K, the number of actions.
- Output Keys:
score_key (torch.Tensor): Tensor of shape (…, num_actions) containing the calculated action probabilities.
Example
```python from tensordict import TensorDict from torchrl.modules.mcts.scores import EXP3Score
# Create an EXP3Score instance exp3 = EXP3Score(gamma=0.1)
# Define a TensorDict with required keys node = TensorDict(
- {
“weights”: torch.tensor([1.0, 1.0]), “num_actions”: torch.tensor(2),
}, batch_size=[],
)
# Compute the action probabilities result = exp3(node) print(result[“score”]) # Output: Tensor with action probabilities ```
- __init__(*, gamma: float = 0.1, weights_key: NestedKey = 'weights', action_prob_key: NestedKey = 'action_prob', reward_key: NestedKey = 'reward', score_key: NestedKey = 'score', num_actions_key: NestedKey = 'num_actions')[source]¶
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(*[, gamma, weights_key, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(node)Define the computation performed at every call.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
is_tdmodule_compatible(module)Checks if a module is compatible with TensorDictModule API.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
reset_out_keys()Resets the
out_keysattribute to its orignal value.reset_parameters_recursive([parameters])Recursively reset the parameters of the module and its children.
select_out_keys(*out_keys)Selects the keys that will be found in the output tensordict.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module[, strict])Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.update_weights(node, action_idx, reward)Updates the weight of the chosen action based on the reward.
xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchesin_keysout_keysout_keys_sourcetraining