WorldModelWrapper

class torchrl.modules.WorldModelWrapper(*args, **kwargs)[source]

World model wrapper.

This module wraps together a transition model and a reward model. The transition model is used to predict an imaginary world state. The reward model is used to predict the reward of the imagined transition.

Parameters:
  • transition_model (TensorDictModule) – a transition model that generates a new world states.

  • reward_model (TensorDictModule) – a reward model, that reads the world state and returns a reward.

get_reward_operator() TensorDictModule[source]

Returns a reward operator that maps a world state to a reward.

get_transition_model_operator() TensorDictModule[source]

Returns a transition operator that maps either an observation to a world state or a world state to the next world state.

Docs

Lorem ipsum dolor sit amet, consectetur

View Docs

Tutorials

Lorem ipsum dolor sit amet, consectetur

View Tutorials

Resources

Lorem ipsum dolor sit amet, consectetur

View Resources